Mice transgenic for human P301S tau protein exhibit many characteristics of the human tauopathies, including the formation of abundant filaments made of hyperphosphorylated tau protein and neurodegeneration leading to nerve cell loss. At 5 months of age, the pathological changes are most marked in brainstem and spinal cord. Here we show that these changes are accompanied by marked neuroinflammation. Many tau-positive nerve cells in brainstem and spinal cord were strongly immunoreactive for interleukin-1beta and cyclooxygenase-2, indicating induction and overproduction of proinflammatory cytokines and enzymes. In parallel, numerous activated microglial cells were present throughout brain and spinal cord of transgenic mice, where they concentrated around tau-positive nerve cells. These findings suggest that inflammation may play a significant role in the events leading to neurodegeneration in the tauopathies and that anti-inflammatory compounds may have therapeutic potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618683 | PMC |
http://dx.doi.org/10.1016/S0002-9440(10)63421-9 | DOI Listing |
Acta Neurol Belg
January 2025
Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
Insulin resistance is a condition characterized by the attenuated biological response in the presence of normal or elevated insulin level and therefore is characterized by the impaired sensitivity to insulin and impaired glucose disposal and utilization. Insulin resistance in brain/Brain insulin resistance (BIR) is accompanied by the various manifestations including alteration in glucose sensing by hypothalamic neurons, impaired sympathetic outflow in response to hypoglycemia, increased ROS production, impaired mitochondrial oxygen consumption in the brain, cognitive deficits and neuronal cell damage. It has been reported that the disrupted insulin signaling is accompanied by the reduced expression of insulin receptor (IR)/insulin receptor substrate 1 (IRS1)/PI3K/AKT and IGF-1 receptor (IGF-1R)/IRS2/PI3K pathways.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
Plasma biomarkers have great potential in the screening, diagnosis, and monitoring of Alzheimer's disease (AD). However, findings on their associations with cerebral perfusion and structural changes are inconclusive. We examined both cross-sectional and longitudinal associations between plasma biomarkers and cerebral blood flow (CBF), gray matter (GM) volume, and white matter (WM) integrity.
View Article and Find Full Text PDFAIDS
November 2024
Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
Objective: Fixed dose combination (FDC) dolutegravir (DTG) plus rilpivirine (RPV) is an approved antiretroviral treatment regimen for people with HIV. The steady-state pharmacokinetics (PK) of FDC DTG+RPV in hemodialysis (HD) has not been previously studied.
Design: We performed a single-center, prospective evaluation of the steady-state PK of FDC DTG +RPV in 4 adults without HIV either requiring HD and in 4 matched participants with normal renal function.
Anal Chem
January 2025
Institut de Recherche en Santé, Environnement et Travail (Irset)─Inserm─EHESP, UMR_S 1085, Université de Rennes, 9 av. du Professeur Léon Bernard, F-35042 Rennes, France.
Amyloidosis is a group of proteinopathies characterized by the systemic or organ-specific deposition of proteins in the form of amyloid fibers. Nearly 40 proteins play a role in these pathologies, and the structures of the associated fibers are beginning to be determined by Cryo-EM. However, the molecular events underlying the process, such as fiber nucleation and elongation, are poorly understood, which impairs developing efficient therapies.
View Article and Find Full Text PDFPLoS One
January 2025
Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica, Beerse, Belgium.
The MAPT gene encodes Tau protein, a member of the large family of microtubule-associated proteins. Tau forms large insoluble aggregates that are toxic to neurons in several neurological disorders, and neurofibrillary Tau tangles represent a key pathological hallmark of Alzheimer's disease (AD) and other tauopathies. Lowering Tau expression levels constitutes a potential treatment for AD but the mechanisms that regulate Tau expression at the transcriptional or translational level are not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!