A model of experimental spinal cord trauma based on computer-controlled intervertebral distraction: characterization of graded injury.

Spine (Phila Pa 1976)

Spinal Trauma Research Laboratory, Nemours Biomedical Research, and Department of Orthopaedic Surgery, Nemours Children's Clinic-Wilmington, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803, USA.

Published: November 2004

Study Design: : A new model of experimental spinal cord injury is detailed based on the application of tensile (distraction) force to the vertebral column of the rat.

Objectives: : To develop an experimental model of graded spinal cord injury by application of tensile forces to the vertebral column.

Summary Of Background Data: : Distraction is frequently an integral component of human spinal cord injury, but the acute application of tensile forces to the spinal cord has not been modeled rigorously.

Methods: : A computer-controlled, motorized outrigger device was used to apply a longitudinal stretching force to sublaminar hooks oriented proximally at T9 and distally at T11. Distraction force was applied using a program that varied the length, speed, and duration of its distraction. A modified 14-point Tarlov score was used to establish the presence of hindlimb dysfunction. This score was correlated with acute changes in somatosensory-evoked potential amplitude, the comprehensive open-field test of locomotor function at 4 weeks, and postmortem measurements of serotonin content and metabolism in spinal cord rostral and distal to the site of injury.

Results: : Of distraction parameters, only length of distraction correlated significantly with each outcome measure. For outcome measures, open-field test inventory and distal/proximal ratio of the spinal content of serotonin were correlated most closely with final Tarlov scores. Acute somatosensory-evoked potential amplitudes proved to be an excellent index of the acute injury but were poor measures of long-term outcome.

Conclusions: : Distraction-induced spinal cord injury was uniformly mild in rats with intact facet capsular ligaments, regardless of distraction parameters. Cutting the facet joint ligaments consistently generated outcome measures associated with mild, moderate, and severe spinal cord injury at 3-, 5-, and 7-mm distraction lengths, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.brs.0000143108.65385.74DOI Listing

Publication Analysis

Top Keywords

spinal cord
32
cord injury
20
application tensile
12
spinal
9
distraction
9
model experimental
8
experimental spinal
8
cord
8
distraction force
8
tensile forces
8

Similar Publications

Mechanical force orchestrates a myriad of cellular events including inhibition of axon regeneration, by locally activating the mechanosensitive ion channel Piezo enriched at the injured axon tip. However, the cellular mechanics underlying Piezo localization and function remains poorly characterized. We show that the RNA repair/splicing enzyme Rtca acts upstream of Piezo to modulate its expression and transport/targeting to the plasma membrane via Rab10 GTPase, whose expression also relies on Rtca.

View Article and Find Full Text PDF

Absence of functional acid-α-glucosidase (GAA) leads to early-onset Pompe disease with cardiorespiratory and neuromuscular failure. A novel Pompe rat model ( ) was used to test the hypothesis that neonatal gene therapy with adeno-associated virus serotype 9 (AAV9) restores cardiorespiratory neuromuscular function across the lifespan. Temporal vein administration of AAV9-DES-GAA or sham (saline) injection was done on post-natal day 1; rats were studied at 6-12 months old.

View Article and Find Full Text PDF

Multiple sclerosis (MS) falls within the spectrum of central nervous system (CNS) demyelinating diseases that may lead to permanent neurological disability. Fundamental to the diagnosis and clinical surveillance is magnetic resonance imaging (MRI) that allows for the identification of T2-hyperintensities associated with autoimmune injury that demonstrate distinct spatial distribution patterns. Here, we describe the clinical experience of a 31-year-old, right-handed, White man seen in consultation at The University of Texas Southwestern Medical Center in Dallas, Texas, following complaints of headaches that began after head trauma related to military service.

View Article and Find Full Text PDF

Study Design: Matched case-control study.

Purpose: To evaluate the midterm outcomes of unilateral pedicle screw fixation (UPSF) versus bilateral pedicle screw fixation (BPSF) in transforaminal lumbar interbody fusion (TLIF) procedure, ascertain efficacy of UPSF in adequately decompressing contralateral foramen+spinal canal and reducing rate of adjacent segment degeneration (ASD) at 4-8-year follow-up (FU).

Overview Of Literature: Previous meta-analyses found no significant differences between UPSF and BPSF regarding fusion rates, clinical and radiological outcomes; however, few studies have reported higher rates of cage migration/subsidence and pseudoarthrosis in the UPSF.

View Article and Find Full Text PDF

Study Design: A prospective web-based survey.

Purpose: Although intraoperative neurophysiological monitoring (IONM) is critical in spine surgery, its usage is largely based on the surgeon's discretion, and studies on its usage trends in Asia-Pacific countries are lacking. This study aimed to examine current trends in IONM usage in Asia-Pacific countries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!