Turning on stem cell cardiogenesis with extremely low frequency magnetic fields.

FASEB J

Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, University of Bologna, Bologna, Italy.

Published: January 2005

Modulation of stem cell differentiation is an important assignment for cellular engineering. Embryonic stem (ES) cells can differentiate into cardiomyocytes, but the efficiency is typically low. Here, we show that exposure of mouse ES cells to extremely low frequency magnetic fields triggered the expression of GATA-4 and Nkx-2.5, acting as cardiac lineage-promoting genes in different animal species, including humans. Magnetic fields also enhanced prodynorphin gene expression, and the synthesis and secretion of dynorphin B, an endorphin playing a major role in cardiogenesis. These effects occurred at the transcriptional level and ultimately ensued into a remarkable increase in the yield of ES-derived cardiomyocytes. These results demonstrate the potential use of magnetic fields for modifying the gene program of cardiac differentiation in ES cells without the aid of gene transfer technologies and may pave the way for novel approaches in tissue engineering and cell therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.04-2695fjeDOI Listing

Publication Analysis

Top Keywords

magnetic fields
16
stem cell
8
extremely low
8
low frequency
8
frequency magnetic
8
turning stem
4
cell cardiogenesis
4
cardiogenesis extremely
4
magnetic
4
fields
4

Similar Publications

In recent years, carbon dots (CDs) with fluorescence imaging function have been widely used in biomedicine, electronic manufacturing and environmental monitoring. However, monochromatic fluorescence is often limited by the application environment and loses its effectiveness. Here, we carefully designed white fluorescent CDs (WF-CDs) by solvothermal method, which is used for fluorescence imaging applications under different environmental conditions.

View Article and Find Full Text PDF

The cadmium-rich intermetallic compounds RhCd ( = Ca, Sr, Y, La-Nd, Sm-Lu) were synthesized from the elements in sealed tantalum tubes. The elements were reacted in an induction furnace and the samples were post-annealed to increase phase purity and crystallinity. The RhCd phases crystallize with the cubic CeCrAl type structure, space group 3̄.

View Article and Find Full Text PDF

Wave-CAIPI Multiparameter MR Imaging in Neurology.

NMR Biomed

March 2025

Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

In clinical practice, particularly in neurology assessments, imaging multiparametric MR images with a single-sequence scan is often limited by either insufficient imaging contrast or the constraints of accelerated imaging techniques. A novel single scan 3D imaging method, incorporating Wave-CAIPI and MULTIPLEX technologies and named WAMP, has been developed for rapid and comprehensive parametric imaging in clinical diagnostic applications. Featuring a hybrid design that includes wave encoding, the CAIPIRINHA sampling pattern, dual time of repetition (TR), dual flip angle (FA), multiecho, and optional flow modulation, the WAMP method captures information on RF B1t fields, proton density (PD), T1, susceptibility, and blood flow.

View Article and Find Full Text PDF

Introduction: In the rapidly advancing field of 'omics research, there is an increasing demand for sophisticated bioinformatic tools to enable efficient and consistent data analysis. As biological datasets, particularly metabolomics, become larger and more complex, innovative strategies are essential for deciphering the intricate molecular and cellular networks.

Methods: We introduce a pioneering analytical approach that combines Principal Component Analysis (PCA) with Graphical Lasso (GLASSO).

View Article and Find Full Text PDF

Correlated spin-wave generation and domain-wall oscillation in a topologically textured magnetic film.

Nat Mater

January 2025

Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.

Spin waves, or magnons, are essential for next-generation energy-efficient spintronics and magnonics. Yet, visualizing spin-wave dynamics at nanoscale and microwave frequencies remains a formidable challenge due to the lack of spin-sensitive, time-resolved microscopy. Here we report a breakthrough in imaging dipole-exchange spin waves in a ferromagnetic film owing to the development of laser-free ultrafast Lorentz electron microscopy, which is equipped with a microwave-mediated electron pulser for high spatiotemporal resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!