Evidence for protein kinase involvement in long-term postsynaptic excitation of intrinsic primary afferent neurons in the intestine.

Auton Neurosci

Department of Anatomy and Cell Biology and Centre for Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia.

Published: September 2004

We have investigated the effects of protein kinase inhibitors on the sustained slow postsynaptic excitation (SSPE) that is evoked by prolonged stimulation of synaptic inputs to intrinsic primary afferent neurons (IPANs) in the small intestines of guinea pigs. Stimulation of synaptic inputs to the IPANs caused depolarisation, increased input resistance, and increased excitation that continued after the cessation of stimulation. The excitation was substantially reduced by the broad-spectrum kinase inhibitor staurosporine (1 microM), PKC inhibitors Ro 31-8220 (3.3 microM) and calphostin C (1 microM), but not by the PKA inhibitor H89 (1 microM). At a higher concentration, 10 microM Ro 31-8220 reduced the excitability of axons to electrical stimulation. Phorbol dibutyrate (1 microM) caused excitability increases, membrane depolarisation, and increased input resistance that mimicked the SSPE. We conclude that the generation of the SSPE requires a phosphorylation step that is mediated by protein kinase C.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.autneu.2004.06.006DOI Listing

Publication Analysis

Top Keywords

protein kinase
12
postsynaptic excitation
8
intrinsic primary
8
primary afferent
8
afferent neurons
8
stimulation synaptic
8
synaptic inputs
8
depolarisation increased
8
increased input
8
input resistance
8

Similar Publications

Background: Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms.

View Article and Find Full Text PDF

TRADD-mediated pyroptosis contributes to diabetic cardiomyopathy.

Acta Pharmacol Sin

January 2025

Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China.

Regulated cell death like pyroptosis is one vital cause of diabetic cardiomyopathy (DCM), which eventually leads to heart failure. Tumor necrosis factor (TNF) receptor-associated death domain protein (TRADD) is an adapter protein with multiple functions that participates in the pathophysiological progress of different cardiovascular disorders via regulating regulated cell death. Studies have shown that TRADD combines with receptor-interacting protein kinase 3 (RIPK3) and facilitates its activation, thereby mediating TNF-induced necroptosis.

View Article and Find Full Text PDF

The clinical management of people with multidrug-resistant (MDR) human immunodeficiency virus (HIV) remains challenging despite continued development of antiretroviral agents. A 58-year-old male individual with MDR HIV and Kaposi sarcoma (KS) was treated with a new antiretroviral regimen consisting of anti-CD4 domain 1 antibody UB-421 and capsid inhibitor lenacapavir. The individual experienced delayed but sustained suppression of plasma viremia and a substantial increase in the CD4 T cell count.

View Article and Find Full Text PDF

Chloride (Cl) ions cause major damage to crops in saline soils. Understanding the key factors that influence Cl uptake and translocation will aid the breeding of more salt-tolerant crops. Here, using genome-wide association study and transcriptomic analysis, we identified a NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER family (NPF) protein, GmNPF7.

View Article and Find Full Text PDF

Tandospirone prevents anesthetic-induced respiratory depression through 5-HT receptor activation in rats.

Sci Rep

January 2025

Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Taiping Road 27, Beijing, 100850, China.

Respiratory depression is a side effect of anesthetics. Treatment with specific antagonists or respiratory stimulants can reverse respiratory depression caused by anesthetics; however, they also interfere with the sedative effects of anesthetics. Previous studies have suggested that tandospirone may ameliorate respiratory depression without affecting the sedative effects of anesthetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!