Recent studies demonstrate that multiple dopamine receptor subtypes contribute to the regulation of vesicular monoamine transporter-2 (VMAT-2) activity. The present studies extend these findings by demonstrating that administration of the nonselective dopamine D2 receptor family agonist, quinpirole, rapidly increased vesicular dopamine uptake in purified rat striatal vesicles. This effect occurred in both postnatal day 40 and 90 rats, and was associated with redistribution of the vesicular monoamine transporter-2 (VMAT-2) within nerve terminals. Neither a full nor a partial dopamine D1 receptor family agonist (SKF81297 nor SKF38393, respectively) affected vesicular dopamine uptake per se, nor the effect of quinpirole. Neither the dopamine D3 nor the D4 receptor antagonists, NGB2904 and clozapine, respectively, altered the quinpirole-mediated increase in uptake. However, the nonselective dopamine D2 receptor family antagonist, eticlopride, prevented the quinpirole-induced increase. Taken together, these data demonstrate that dopamine D2 receptor subtype activation increases vesicular dopamine uptake. Implications of this phenomenon with regard to the treatment of Parkinson's disease will be discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2004.09.049DOI Listing

Publication Analysis

Top Keywords

dopamine receptor
28
vesicular dopamine
16
dopamine uptake
16
vesicular monoamine
12
monoamine transporter-2
12
receptor family
12
dopamine
11
activation increases
8
increases vesicular
8
transporter-2 vmat-2
8

Similar Publications

Objectives: Sudden death in multiple system atrophy (MSA) is caused by decreased serotonergic innervation, but there is no routine test method for this decrease. In addition to dopamine transporters, iodine-123-labelled N-(3-fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl) nortropane (I-FP-CIT) binds serotonin transporters (SERTs). We noted a binding potential to quantify the total quantity of I-FP-CIT binding to its receptors.

View Article and Find Full Text PDF

Interest and limits of using pharmacogenetics in MDMA-related fatalities: A case report.

Forensic Sci Int Genet

December 2024

Service de Pharmacologie-Toxicologie et Pharmacovigilance, Centre Hospitalo-Universitaire d'Angers, Angers, France.

Interpreting postmortem concentrations of 3,4-Methylenedioxymethamphetamine (MDMA) remains challenging due to the wide range of reported results and the potential idiosyncratic nature of MDMA toxicity. Consequently, forensic pathologists often rely on a body of evidence to establish conclusions regarding the cause and the manner of death in death involving MDMA. Given these issues, implementing pharmacogenetics' (PGx)' testing may be beneficial.

View Article and Find Full Text PDF

Isopropylated phenyl phosphates (IPP) are an additive organophosphate flame retardant (OPFR) that has been extensively used in furniture, electronics, automobiles, plastics, and children's products to slow down the spread of fire but its continued leaching leads to toxicity concerns. Toxicological information on this important legacy contaminant is limiting. Using zebrafish, our prior whole embryonic RNA-seq data revealed disruption of gene sets enriched for DNA methylation, neurotransmitter synthesis, retinoic acid signaling and eye development.

View Article and Find Full Text PDF

Dopamine modulates a wide range of cognitive processes in the prefrontal cortex, but the underlying mechanisms remain unclear. Here, we examined the roles of prefrontal vasoactive intestinal polypeptide (VIP)-expressing neurons and their D1 receptors (D1Rs) in working memory using a delayed match-to-sample task in mice. VIP neurons conveyed robust working-memory signals, and their inactivation impaired behavioral performance.

View Article and Find Full Text PDF

Dysregulation of the dopamine (DA) system is a hallmark of substance use disorders, including alcohol use disorder (AUD). Of the DA receptor subtypes, the DA D2 receptors (D2Rs) play a key role in the reinforcing effects of alcohol. D2Rs are expressed in numerous brain regions associated with the regulation of appetitive behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!