A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Origin and mechanistic pathways of formation of the parent furan--a food toxicant. | LitMetric

Origin and mechanistic pathways of formation of the parent furan--a food toxicant.

J Agric Food Chem

Department of Food Science and Agricultural Chemistry, McGill University, 21, 111 Lakeshore, Ste. Anne de Bellevue, Quebec, Canada.

Published: November 2004

Studies performed on model systems using pyrolysis-GC-MS analysis and (13)C-labeled sugars and amino acids in addition to ascorbic acid have indicated that certain amino acids such as serine and cysteine can degrade and produce acetaldehyde and glycolaldehyde that can undergo aldol condensation to produce furan after cyclization and dehydration steps. Other amino acids such as aspartic acid, threonine, and alpha-alanine can degrade and produce only acetaldehyde and thus need sugars as a source of glycolaldehyde to generate furan. On the other hand, monosaccharides are also known to undergo degradation to produce both acetaldehyde and glycolaldehyde; however, (13)C-labeling studies have revealed that hexoses in general will mainly degrade into the following aldotetrose derivatives to produce the parent furan-aldotetrose itself, incorporating the C3-C4-C5-C6 carbon chain of glucose (70%); 2-deoxy-3-ketoaldotetrose; incorporating the C1-C2-C3-C4 carbon chain of glucose (15%); and 2-deoxyaldotetrose, incorporating the C2-C3-C4-C5 carbon chain of glucose (15%). Furthermore, it was also proposed that under nonoxidative conditions of pyrolysis, ascorbic acid can generate the 2-deoxyaldotetrose moiety, a direct precursor of the parent furan. In addition, 4-hydroxy-2-butenal-a known decomposition product of lipid peroxidation-was proposed as a precursor of furan originating from polyunsaturated fatty acids. Among the model systems studied, ascorbic acid had the highest potential to produce furan, followed by glycolaldehyde/alanine > erythrose > ribose/serine > sucrose/serine > fructose/serine > glucose/cysteine.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf0490403DOI Listing

Publication Analysis

Top Keywords

amino acids
12
ascorbic acid
12
produce acetaldehyde
12
carbon chain
12
chain glucose
12
model systems
8
degrade produce
8
acetaldehyde glycolaldehyde
8
produce furan
8
glucose 15%
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!