The primary structure of Brassica napus procruciferin 2/3a was engineered to elucidate structure-function relationships and to improve the functionality of cruciferin. The following mutants were constructed: (1) C287T, (2) DeltaII, variable region II was deleted; (3) C287T/DeltaII, mutation involving (1) and (2); (4) DeltaIV + A1aIV; and (5) DeltaIV + A3IV, variable region IV was replaced with variable region IV containing many charged residues from soybean glycinin A1aB1b and A3B4 subunits. Differential scanning calorimetry analysis revealed that the A1aIV region has a more favorable interaction with the procruciferin molecule than does A3IV as well as the original regions. On the basis of heat-induced precipitation analysis, it was concluded that replacement of the free cysteine residue with threonine (C287T) and insertion of charged regions (DeltaIV + A1aIV and DeltaIV + A3IV) could lead procruciferin to form soluble aggregates after heating. Low solubility was observed in mutants DeltaIV + A3IV, DeltaII, and C287T/DeltaII, especially between pH 4 and 6 at mu = 0.08, but not in DeltaIV + A1aIV, indicating that the number of acidic amino acid residues and the high number of glutamine residues are important factors for solubility at mu = 0.08. None of the mutants showed any improvements in emulsifying ability, indicating that destabilization and addition of the hydrophilic region are not effective for emulsification. The insertion of the A1aIV region in procruciferin made the molecule more susceptible to alpha-chymotrypsin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf049813n | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!