Direct photochemical patterning and refunctionalization of supported phospholipid bilayers.

J Am Chem Soc

Department of Applied Science, University of California, Davis, California 95616, USA.

Published: November 2004

A wet photolithographic route for micropatterning fluid phospholipid bilayers is demonstrated in which spatially directed illumination by short-wavelength ultraviolet radiation results in highly localized photochemical degradation of the exposed lipids. Using this method, we can directly engineer patterns of hydrophilic voids within a fluid membrane as well as isolated membrane corrals over large substrate areas. We show that the lipid-free regions can be refilled by the same or other lipids and lipid mixtures which establish contiguity with the existing membrane, thereby providing a synthetic means for manipulating membrane compositions, engineering metastable membrane microdomains, probing 2D lipid-lipid mixing, and designing membrane-embedded arrays of soluble proteins. Following this route, new constructs can be envisaged for high-throughput membrane proteomic, biosensor array, and spatially directed, aqueous-phase material synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja047714kDOI Listing

Publication Analysis

Top Keywords

phospholipid bilayers
8
spatially directed
8
membrane
6
direct photochemical
4
photochemical patterning
4
patterning refunctionalization
4
refunctionalization supported
4
supported phospholipid
4
bilayers wet
4
wet photolithographic
4

Similar Publications

Lipid-induced condensate formation from the Alzheimer's Aβ peptide triggers amyloid aggregation.

Proc Natl Acad Sci U S A

January 2025

Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, United Kingdom.

The onset and development of Alzheimer's disease is linked to the accumulation of pathological aggregates formed from the normally monomeric amyloid-β peptide within the central nervous system. These Aβ aggregates are increasingly successfully targeted with clinical therapies at later stages of the disease, but the fundamental molecular steps in early stage disease that trigger the initial nucleation event leading to the conversion of monomeric Aβ peptide into pathological aggregates remain unknown. Here, we show that the Aβ peptide can form biomolecular condensates on lipid bilayers both in molecular assays and in living cells.

View Article and Find Full Text PDF

Dissecting the biophysical mechanisms of oleate hydratase association with membranes.

Front Mol Biosci

January 2025

Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States.

This study investigates the dynamics of oleate hydratase (OhyA), a bacterial flavoenzyme from , and its interactions with lipid membranes, focusing on the factors influencing membrane binding and oligomerization. OhyA catalyzes the hydration of unsaturated fatty acids, playing a key role in bacterial pathogenesis by neutralizing host antimicrobial fatty acids. OhyA binds the membrane bilayer to access membrane-embedded substrates for catalysis, and structural studies have revealed that OhyA forms oligomers on membrane surfaces, stabilized by both protein-protein and protein-lipid interactions.

View Article and Find Full Text PDF

Electroporation and electrofusion are efficient methods, which have been widely used in different areas of biotechnology and medicine. Pulse strength and width, as an external condition, play an important role in the process of these methods. However, comparatively little work has been done to explore the effects of pulsed electric field parameters on electroporation and electrofusion.

View Article and Find Full Text PDF

Photopolymerizable robust lipids towards reliability and their applications.

Biophys Rev

December 2024

Laboratorio de BioNanotecnología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.

Synthetic lipids have been studied as components in membrane models and drug delivery systems. Polymerizable phospholipids, especially photosensitive ones, can form new bilayer bonds when UV light irradiates. These phospholipids have been known since the 1980s, but in the last few years, new applications have been highlighted.

View Article and Find Full Text PDF

α-Synuclein (αSyn), an intrinsically disordered protein implicated in Parkinson's disease, is potentially thought to initiate aggregation through binding to cellular membranes. Previous studies have suggested that anionic membrane charge is necessary for this binding. However, these studies largely focus on unmodified αSyn, while nearly all αSyn in the body is N-terminally acetylated (NTA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!