A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High velocity interparticle collisions driven by ultrasound. | LitMetric

High velocity interparticle collisions driven by ultrasound.

J Am Chem Soc

School of Chemical Science, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.

Published: November 2004

Ultrasonic irradiation of slurries produces high velocity impacts between solid metal particles that are sufficient to cause interparticle melting. Sonication of 5 mum Zn powder as a slurry in alkanes, for example, produces dense agglomerates 50 mum in diameter consisting of approximately 1000 fused particles. Particle size was found to be the most influential parameter in inducing local melting during interparticle collisions. Ultrasonic irradiation of mixed powders resulted in formation of agglomerates with larger Zn particles "soldered" by the smaller ones. A simple kinematic model of the ultrasound-driven interparticle fusion predicts a melting criterion that is nonmonotonically dependent on particle size and is shown to be in agreement with experiment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja049493oDOI Listing

Publication Analysis

Top Keywords

high velocity
8
interparticle collisions
8
ultrasonic irradiation
8
particle size
8
interparticle
4
velocity interparticle
4
collisions driven
4
driven ultrasound
4
ultrasound ultrasonic
4
irradiation slurries
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!