With increasing evidence suggesting the involvement of oxidative stress in various disorders and diseases, the role of antioxidants in vivo has received much attention. Chemically, tocopherols and tocotrienols are closely related; however, it has been observed that they have widely varying degrees of biological effectiveness. The present study has been carried out in an attempt to deepen our understanding of whether there is a significant difference in distribution between tocopherol and tocotrienol homologs to rat eye tissues. Rats were administered 5 microL of pure tocopherol or tocotrienol to each eye once a day for 4 d. Various tissues of the eyes were separated and analyzed for tocopherol and tocotrienol concentrations. The concentration of alpha-to-cotrienol increased markedly in every tissue to which it was administered; however, no significant increase was observed in the case of alpha-tocopherol. The intraocular penetration of gamma-tocopherol and gamma-tocotrienol did not differ significantly. Additionally, a significant increase in total vitamin E concentration was observed in ocular tissues, including crystalline lens, neural retina, and eye cup, with topical administration using a relatively small amount (5 microL) of vitamin E, whereas no significant increase was observed when the same amount of vitamin E was administered orally. Topical administration of tocotrienols is thus an effective way to increase ocular tissue vitamin E concentration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11745-004-1252-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!