Skillful psychoanalytic technique presumably involves knowing what to say, and when and how to say it. Does skillful technique have a positive impact upon the patient? The study described in this article relied on ratings by experienced psychoanalysts using the Analytic Process Scales (APS), a research instrument for assessing recorded psychoanalyses, in order to examine analytic interventions and patient productivity (greater understanding, affective engagement in the analytic process, and so on). In three analytic cases, the authors found significant correlations between core analytic activities (e.g., interpretation of defenses, transference, and conflicts) and patient productivity immediately following the intervention, but only if it had been skillfully carried out. Findings were independently replicated by psychology interns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/j.2167-4086.2004.tb00193.x | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Research Center for Energy and Environmental Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
Unveiling the key influencing factors towards electrode/electrolyte interface control is a long-standing challenge for a better understanding of microscopic electrode kinetics, which is indispensable to building up guiding principles for designer electrocatalysts with desirable functionality. Herein, we exemplify the oxygen evolution reaction (OER) via water molecule oxidation with the iridium dioxide electrocatalyst and uncovered the significant mismatching effect of pH between local electrode surface and bulk electrolyte: the intrinsic OER activity under acidic or near-neutral condition was deciphered to be identical by adjusting this pH mismatching. This result indicates that the local pH effect at the electrified solid-liquid interface plays the main role in the "fake" OER performance.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China.
Objective: This research project aimed to identify and analyze the top 30 drugs most commonly associated with kidney stone formation using data from the U.S. Food and Drug Administration's Adverse Event Reporting System (FAERS) database.
View Article and Find Full Text PDFMicrobial research generates vast and complex data from diverse omics technologies, necessitating innovative analytical solutions. microGalaxy (Galaxy for Microbiology) addresses these needs with a user-friendly platform that integrates 220+ tool suites and 65+ curated workflows for microbial analyses, including taxonomic profiling, assembly, annotation, and functional analysis. Hosted on the main EU Galaxy server (microgalaxy.
View Article and Find Full Text PDFHealth Sci Rep
January 2025
Department of Microbiology Dr D. Y. Patil Medical College, Hospital and Research Centre, Dr D. Y. Patil Vidyapeeth (Deemed-to-be-University) Pune Maharashtra India.
Background And Aims: Artificial Intelligence (AI) beginning to integrate in healthcare, is ushering in a transformative era, impacting diagnostics, altering personalized treatment, and significantly improving operational efficiency. The study aims to describe AI in healthcare, including important technologies like robotics, machine learning (ML), deep learning (DL), and natural language processing (NLP), and to investigate how these technologies are used in patient interaction, predictive analytics, and remote monitoring. The goal of this review is to present a thorough analysis of AI's effects on healthcare while providing stakeholders with a road map for navigating this changing environment.
View Article and Find Full Text PDFLab Chip
January 2025
Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel.
Dissolved oxygen is crucial for metabolism, growth, and other complex physiological and pathological processes; however, standard physiological models (such as organ-on-chip systems) often use ambient oxygen levels, which do not reflect the lower levels that are typically found . Additionally, the local generation of reactive oxygen species (ROS; a key factor in physiological systems) is often overlooked in biology-mimicking models. Here, we present a microfluidic system that integrates electrochemical dissolved oxygen sensors with lab-on-a-chip technology to monitor the physiological oxygen concentrations and generate hydrogen peroxide (HO; a specific ROS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!