The microbial glycocalyx is composed of a variety of polyanionic exopolysaccharides and plays important roles in microbial attachment to different substrata and to other cells. Here we report the successful use of low-voltage scanning electron microscopy (LVSEM) to visualize the glycocalyx in two microbial models (Klebsiella pneumoniae and Enterococcus faecalis biofilms) at high resolution, and also the dependence on fixation containing polycationic dyes for its visualization. Fixation in a paraformaldehyde-glutaraldehyde cocktail without cationic dyes was inadequate for visualizing the glycocalyx, whereas addition of various dyes (alcian blue, safranin, and ruthenium red) to the aldehyde cocktail appeared necessary for stabilization. The cationic dyes varied in size, shape, and charge density, and these factors appeared responsible for different phenotypic appearances of the glycocalyx with each dye. These results suggest that aldehyde fixation with cationic dyes for high-resolution LVSEM will be a useful tool for investigation of microbial biofilms as well as investigation of the extent and role of the glycocalyx in microbial attachment to surfaces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3957825 | PMC |
http://dx.doi.org/10.1369/jhc.4A6428.2004 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China.
The photo-Fenton reaction can efficiently degrade organic pollutants and thus is applied intensively for clearing out membrane fouling. However, the pollutant removal efficiency is greatly limited by the redox cycle rate of Fe/Fe and the rapid recombination rate of the photogenerated electrons and holes. In order to overcome these drawbacks, a sulfonated polysulfone composite membrane was designed and prepared by incorporating titanium dioxide (TiO) nanoparticles into a sulfonated polysulfone membrane and sequentially forming β-FeOOHs on the membrane surface.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Science, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560, Japan.
Two 3D/2D anionic metal-organic frameworks (MOFs), [Cu(HL)] () and [Mn(L)(DMF)] ( (DMF = ,-dimethylformamide), were synthesized by the solvothermal reaction of metal salts and 5'-(4-carboxyphenyl)-2',4',6'-triethyl-[1,1':3',1″-terphenyl]-4,4″-dicarboxylic acid (HL). Single-crystal X-ray diffraction analyses revealed that complex shows three-dimensional (3D) frameworks with a (3,6)-connected 3-fold interpenetrated topology with the Schläfli symbols of {4.6}{4.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Division de Fotónica, Centro de Investigaciones en Óptica AC, Loma del Bosque 115, Col. Lomas del Campestre, León 37150, Guanajuato, Mexico.
Methylene blue is a cationic organic dye commonly found in wastewater, groundwater, and surface water due to industrial discharge into the environment. This emerging pollutant is notably persistent and can pose risks to both human health and the environment. In this study, we developed a Surface Plasmon Resonance Biosensor employing a BK7 prism coated with 3 nm chromium and 50 nm of gold in the Kretschmann configuration, specifically for the detection of methylene blue.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa S/N, 15782 Santiago de Compostela, Spain.
The present work analyzes the behavior of an activated carbon fabricated from almond shells for the removal of cationic dyes (methylene blue, MB, and malachite green, MG) by adsorption from aqueous solutions. The carbonized precursor was activated with KOH at a 1:2 (/) ratio with the objective of increasing both the surface area and the pore volume. Both non-activated and activated carbon were characterized in different aspects of interest in dye adsorption studies (surface structure, point of zero charge, specific surface area, and pore size distribution).
View Article and Find Full Text PDFJ Environ Manage
January 2025
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow city, Poland.
Fly ash, produced during coal combustion for energy making, which is recognized as an industrial by-product, could lead to environmental health hazards. Subsequently, fly ash found that an exceptional adsorption performance for the removal of various toxic pollutants, the adsorption capacity of fly ash might be altered by introducing physical/chemical stimulation. Successfully converting fly ash into zeolites not only recovers their disposal difficulties but also transforms unwanted materials into merchandisable products for various industrial applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!