Background: Posttransplant chronic allograft deterioration associated with development of transplant arteriosclerosis (TA) remains an unresolved problem. Recent studies suggest that the smooth muscle cells (SMCs) constituting the neointima are derived from recipient hematopoietic stem cells (HSCs). However, the underlying mechanisms of the process are not yet fully elucidated.
Methods And Results: We examined the genes expressed in allografts at different stages of TA development using a mice aortic transplantation model. Genes were analyzed by a differential mRNA display technique. We show that stromal cell-derived factor-1alpha (SDF-1alpha) is a critical molecular target for the treatment of TA. During the course of TA, intragraft SDF-1alpha expression was upregulated with time, and the circulating HSCs expressing its counterreceptor CXCR4 increased in the recipients receiving allografts. CXCR4-positive HSCs, derived from transplant recipients, migrated into allografts via microvessels in the adventitia and then toward the luminal side. The HSCs differentiated into SMC-like cells, contributing to the in situ formation of the neointima. In support of a functional role for these molecules, in vivo neutralization of SDF-1alpha inhibited HSC mobilization and significantly attenuated neointimal formation.
Conclusions: Interaction between SDF-1alpha and CXCR4 plays a key role in TA development. Blockade of SDF-1alpha may become a new therapeutic modality for TA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.CIR.0000146890.93172.6C | DOI Listing |
Nature
January 2025
German Centre for Cardiovascular Research (DZHK), Partner Site Lower Saxony, Göttingen, Germany.
Cardiomyocytes can be implanted to remuscularize the failing heart. Challenges include sufficient cardiomyocyte retention for a sustainable therapeutic impact without intolerable side effects, such as arrhythmia and tumour growth. We investigated the hypothesis that epicardial engineered heart muscle (EHM) allografts from induced pluripotent stem cell-derived cardiomyocytes and stromal cells structurally and functionally remuscularize the chronically failing heart without limiting side effects in rhesus macaques.
View Article and Find Full Text PDFFront Oncol
January 2025
The Second Department of General Surgery, the Fourth Hospital of Hebei Medical University, Hebei, Shijiazhuang, China.
Background: Stromal-cell-derived factor 1 (SDF-1) plays a crucial role in hematopoiesis and has been implicated in acute myeloid leukemia (AML) pathogenesis. Understanding its relationship with chemotherapy outcomes could lead to improved therapeutic approaches for elderly AML patients.
Methods: This study retrospectively analyzed the medical records of elderly AML patients (n = 187) and compared serum SDF-1α levels with age-matched controls (n = 120).
ACS Nano
January 2025
Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States.
Extracellular vesicles (EVs) are cell derived nanovesicles which are implicated in both physiological and pathological intercellular communication, including the initiation, progression, and metastasis of cancer. The exchange of biomolecules between stromal cells and cancer cells via EVs can provide a window to monitor cancer development in real time for better diagnostic and interventional strategies. In addition, the process of secretion and internalization of EVs by stromal and cancer cells in the tumor microenvironment (TME) can be exploited for delivering therapeutics.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.
Stem cell implantation holds promise for enhancing bone repair, but risks of pathogen transmission and malignant cell transformation should not be ignored. Compared to stem cell implantation, recruitment of endogenous stem cells to injured sites is more critical for in situ bone regeneration. In this study, based on the acidic microenvironment of bone injury, an HG-AA-SDF-1α composite hydrogel with a dual-control intelligent switch function is developed by incorporating stromal cell-derived factor (SDF-1α), arginine carbon dots (Arg-CDs), and calcium ions (Ca) into the oxidized hyaluronic acid/gelatin methacryloyl (HG) hydrogel.
View Article and Find Full Text PDFiScience
January 2025
Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China.
Studies have shown that circRNAs play an important regulatory role in trophoblast function and embryonic development. Based on sequencing and functional experiments, we found that hsa_circ_0069443 can regulate the function of trophoblast cells, and its presence is found in the exosomes secreted by trophoblast cells. It is known that exosomes mediate the interaction between the uterus and embryo, which is crucial for successful pregnancy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!