Intranasal insulin reduces body fat in men but not in women.

Diabetes

Institute of Neuroendocrinology, University of Lübeck, Ratzeburger Allee 160, Haus 23a, 23538 Lübeck, Germany.

Published: November 2004

Insulin acts in the central nervous system to reduce food intake and body weight and is considered a major adiposity signal. After intranasal administration, insulin enters the cerebrospinal fluid compartment and alters brain functions in the absence of substantial absorption into the blood stream. Here we report the effects of 8 weeks of intranasal administration of insulin (4 x 40 IU/day) or placebo to two groups of healthy human subjects (12 men and 8 women in each group). The insulin-treated men lost 1.28 kg body wt and 1.38 kg of body fat, and their waist circumference decreased by 1.63 cm. Plasma leptin levels dropped by an average of 27%. In contrast, the insulin-treated women did not lose body fat and gained 1.04 kg body wt due to a rise in extracellular water. Our results provide a strong, first confirmation in humans that insulin acts as a negative feedback signal in the regulation of adiposity and point to a differential sensitivity to the catabolic effects of insulin based on sex.

Download full-text PDF

Source
http://dx.doi.org/10.2337/diabetes.53.11.3024DOI Listing

Publication Analysis

Top Keywords

body fat
12
men women
8
insulin acts
8
intranasal administration
8
administration insulin
8
body
6
insulin
5
intranasal insulin
4
insulin reduces
4
reduces body
4

Similar Publications

Higher abdominal fat area associates with lower donor kidney function before and after living kidney donation.

Sci Rep

December 2024

Department of Surgery, Division of Transplant Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

Central body fat distribution affects kidney function. Abdominal fat measurements using computed tomography (CT) may prove superior in assessing body composition-related kidney risk in living kidney donors. This retrospective cohort study including 550 kidney donors aimed to determine the association between CT-measured abdominal fat areas and kidney function before and after donor nephrectomy.

View Article and Find Full Text PDF

Despite numerous studies investigating the correlation between the serum uric acid and high-density lipoprotein cholesterol ratio (UHR) and fatty liver disease, the evidence for the dose-response relationship between UHR and liver fat content (LFC) remains uncertain. This study employs quantitative computed tomography (CT) to quantify LFC and aims to investigate the correlation and dose-response relationship between UHR levels and LFC in Chinese adults. Based on the health check-up data from 2021 at Henan Provincial People's Hospital, China, the objective of this cross-sectional study was to investigate the association between UHR levels and LFC among individuals of different genders.

View Article and Find Full Text PDF

Omentin-1 mitigates non-alcoholic fatty liver disease by preserving autophagy through AMPKα/mTOR signaling pathway.

Sci Rep

December 2024

Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China.

Adipose tissue-derived adipokines facilitate inter-organ communication between adipose tissue and other organs. Omentin-1, an adipokine, has been implicated in the regulation of glucose and insulin metabolism. However, limited knowledge exists regarding the regulatory impact of endogenous omentin-1 on hepatic steatosis.

View Article and Find Full Text PDF

VPS28 (vacuolar protein sorting 28) is a subunit of the endosomal sorting complexes required for transport (ESCRTs) and is involved in ubiquitination. Ubiquitination is a critical system for protein degradation in eukaryotes. Considering the recent findings on the role of ubiquitination in the regulation of lipid metabolism, we hypothesized that VPS28 might affect the expression of genes involved in milk fat synthesis.

View Article and Find Full Text PDF

Treatment of complex craniofacial deformities is still a challenge for medicine and dentistry because few approach therapies are available on the market that allow rehabilitation using 3D-printed medical devices. Thus, this study aims to create a scaffold with a morphology that simulates bone tissue, able to create a favorable environment for the development and differentiation of osteogenic cells. Moreover, its association with Plenum Guide, through cell-based tissue engineering (ASCs) for guided bone regeneration in critical rat calvarial defects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!