Objective: Human embryonic stem (ES) cells can be induced to differentiate into hematopoietic lineages either by stromal cell coculture or by formation of embryoid bodies (EBs). Here, we better characterize cell-bound and secreted factors that support this hematopoietic development.
Methods: Human ES cells either cocultured on the mouse bone marrow cell line S17, or allowed to form EBs, were induced to differentiate in the presence of serum, serum-free conditions, and serum-free media supplemented with defined cytokines. To better characterize the requirement for stromal cell-bound or secreted proteins, S17 conditioned media and transwell cultures were also utilized.
Results: In both models, CD34(+), CD45(+), and hematopoietic colony-forming cells (CFCs) were routinely derived. While hematopoietic development was diminished without serum, here we demonstrate with the stromal cell coculture model that addition of the growth factors stem cell factor (SCF), thrombopoietin (TPO), and Flt-3 ligand (Flt3L) to serum-free media does allow isolation of hematopoietic progenitors. However, these same three growth factors added to serum-free media do not support significant hematopoiesis in the EB system. However, addition of the mesoderm-inducing factors bone morphogenic protein-4 and vascular endothelial growth factor to EBs grown in serum-free media plus SCF, TPO, and Flt-3L does improve hematopoietic development.
Conclusion: These results demonstrate the utility of human ES cell to evaluate specific stimuli that regulate cell fate decisions and the survival of specific lineages. Moreover, the method used to promote differentiation of ES cells may alter the cytokines or growth factors required to isolate specific cell types.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exphem.2004.06.013 | DOI Listing |
STAR Protoc
January 2025
Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA. Electronic address:
Hematopoietic stem cells (HSCs) generate blood and immune cells. Here, we present a protocol to differentiate human pluripotent stem cells (hPSCs) into hematopoietic progenitors that express the signature HSC transcription factors HLF, HOXA5, HOXA7, HOXA9, and HOXA10. hPSCs are dissociated, seeded, and then sequentially differentiated into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and hematopoietic progenitors through the sequential addition of defined, serum-free media.
View Article and Find Full Text PDFCytotherapy
January 2025
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. Electronic address:
Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.
View Article and Find Full Text PDFFood Res Int
February 2025
Department of Chemical & Biological Engineering, Tufts University Medford MA USA; Tufts University Center for Cellular Agriculture (TUCCA), Tufts University Medford MA USA. Electronic address:
Cultivated meat, the process of generating meat in vitro without sacrificing animals, is a promising alternative to the traditional practice of livestock agriculture. However, the success of this field depends on finding sustainable and economical replacements for animal-derived and expensive fetal bovine serum (FBS) that is typically used in cell culture processes. Here, we outline an effective screening process to vet the suitability of microbial lysates to support the growth of immortalized bovine satellite cells (iBSCs) and mackerel (Mack1) cells.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, 48940, Spain.
Background And Aim: Human dental pulp stem cells (hDPSCs) constitute a promising alternative for central nervous system (CNS) cell therapy. Unlike other human stem cells, hDPSCs can be differentiated, without genetic modification, to neural cells that secrete neuroprotective factors. However, a better understanding of their real capacity to give rise to functional neurons and integrate into synaptic networks is still needed.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Post Graduate Program in Medicine-Biophotonics, Nove de Julho University / UNINOVE, São Paulo, Brazil.
This brief report aimed to investigate the optical absorbance spectra of normal, dysplastic, and malignant epithelial cell lines under normal and nutritional stress conditions. HaCAT (keratinocyte), DOK (oral dysplastic), and oral squamous cell carcinoma (OSCC) cell lines (CA1, Luc4, SCC9) were evaluated regarding their optical absorbance after culture with 0-10% fetal bovine serum. Absorbance measurements indicated that HaCAT under serum starvation exhibited higher absorbance at blue (430 nm) and near-infrared (906 nm) wavelengths.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!