Substitution of the SIVmac239 promoter/enhancer by the strong EF1alpha promoter results in a severe replication defect due to a failure to respond to Tat. Revertant viruses with minimal promoter sequences (two Sp1 sites and a TATA box) were obtained that had fully restored their replicative potential. Comparison of the different LTRs indicated that structural alterations in the TAR stem due to a 31bp exon of the EF1alpha promoter rather than the mere presence of transcription factor binding sites within U3 were responsible for the attenuation. Structural models based on genuine RNA sequences combined with a refined algorithm to calculate the probability of the looping-mediated interaction between protein complexes bound to nucleic acid polymers indicated that the local concentration of TAR-bound Tat close to the RNA polymerase II complex was reduced more than 100-fold for the mutant as compared to SIVmac239. These results show that HIV/SIV replication requires only a minimal set of cis-acting elements in the promoter and suggest a hitherto unrecognised requirement of flexibility for the nascent TAR structure to allow anti-termination by Tat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2004.09.042 | DOI Listing |
Microorganisms
November 2024
Department of Molecular and Cell Biology, University of California Merced, Merced, CA 95343, USA.
Nat Commun
November 2024
Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
Microtubules, built from heterodimers of α- and β-tubulins, control cell shape, mediate intracellular transport, and power cell division. The concentration of αβ-tubulins is tightly controlled through a posttranscriptional mechanism involving selective and regulated degradation of tubulin-encoding mRNAs. Degradation is initiated by TTC5, which recognizes tubulin-synthesizing ribosomes and recruits downstream effectors to trigger mRNA deadenylation.
View Article and Find Full Text PDFChem Rev
November 2024
State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China.
The quest to imbue machines with intelligence akin to that of humans, through the development of adaptable neuromorphic devices and the creation of artificial neural systems, has long stood as a pivotal goal in both scientific inquiry and industrial advancement. Recent advancements in flexible neuromorphic electronics primarily rely on nanomaterials and polymers owing to their inherent uniformity, superior mechanical and electrical capabilities, and versatile functionalities. However, this field is still in its nascent stage, necessitating continuous efforts in materials innovation and device/system design.
View Article and Find Full Text PDFOncogene
January 2025
Dept. of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
Hypoxia is common in tumors and is associated with cancer progression and drug resistance, driven, at least in part, by genetic instability. Little is known on how hypoxia affects Translesion DNA Synthesis (TLS), in which error-prone DNA polymerases bypass lesions, thereby maintaining DNA continuity at the price of increased mutations. Here we show that under acute hypoxia, PCNA monoubiquitination, a key step in TLS, and expression of error-prone DNA polymerases increased under regulation of the HIF1α transcription factor.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2024
School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!