Voxelation is a new approach for genome scale acquisition of brain gene expression patterns. The method employs high-throughput analysis of spatially registered voxels (cubes) to create multiple volumetric images of brain gene expression, similar to those obtained from biomedical imaging systems. The spatial resolution of voxelation depends on voxel size, with smaller voxels giving higher resolution. An important question is the applicability of different transcript profiling tools for the various levels of resolution that can be employed. Here, we describe the use of three methods to analyze voxel transcript abundance: real-time PCR, microarray analysis and linear amplification coupled with microarrays. We show statistically significant concordance between real-time PCR and microarray analysis for the myelin basic protein gene in human brain specimens at differing levels of spatial resolution. In addition, we also demonstrate the feasibility of using linear amplification coupled with microarray analysis to create voxelation maps from the mouse brain at high resolution, 1 microl. These data indicate the suitability of a number of transcript profiling tools for various levels of spatial resolution in voxelation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/b:hijo.0000039878.01844.c6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!