Appetence behaviours of the triatomine bug Rhodnius prolixus on a servosphere in response to the host metabolites carbon dioxide and ammonia.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

Institute of Zoology, University of Neuchâtel, Rue Emile Argand 11, 2007 Neuchâtel, Switzerland.

Published: October 2004

A combination of 1,000 ppm CO(2) plus 30-40 ppb NH(3) in an air stream induced Rhodnius prolixus nymphs walking on a servosphere to perform a series of appetence behaviours. Shortly after the onset of stimulation the nymphs turned sharply upwind towards the source of the chemostimuli (within 13 +/- 9 s) from mostly downwind and crosswind walks in the air stream alone. The mean vector angles of these upwind tracks were concentrated in a cone 60 degrees either side of due upwind. The upwind walking bugs stopped more frequently but for a shorter duration and walked at a higher speed than before stimulation. During stops in the presence of the chemostimuli the bugs frequently corrected their course angles and extended their forelegs to reach higher with their antennae in the air. In the air stream alone, R. prolixus nymphs frequently sampled the sphere surface with the antennae and cleaned their antennae with the foreleg tarsi. However, the nymphs only briefly tapped the left or right antennal flagellum on the corresponding first leg tarsus and never touched the servosphere surface in the presence of the chemostimuli. After chemostimulus removal from the air stream the bugs continued to respond with the same appetence responses as during stimulation, but walked more tortuously in a crosswind direction in an effort to regain contact with the chemostimuli.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00359-004-0540-5DOI Listing

Publication Analysis

Top Keywords

air stream
16
appetence behaviours
8
rhodnius prolixus
8
prolixus nymphs
8
presence chemostimuli
8
air
5
behaviours triatomine
4
triatomine bug
4
bug rhodnius
4
prolixus servosphere
4

Similar Publications

Exploring the synergistic effect of NaOH/NaClO absorbent in a novel wet FGD scrubber to control SOx/NOx emissions.

Environ Monit Assess

January 2025

International Joint Research Center For Green Energy and Chemical Industry, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.

Escalating SOx and NOx emissions from industrial plants necessitates customized scrubbing solutions to improve removal efficiency and tackle cost limitations in existing wet FGD units. This work investigates the real-time intensified removal pathways via an innovative two-stage countercurrent spray tower configuration strategically integrating NaOH (M) and NaOH/NaClO (M/M) to remove SOx and NOx emissions simultaneously from the industrial stack through a comprehensive parametric study of absorbents concentration, reaction temperature, gas flow rate, liquid to gas ratio (F/F), and absorbent showering head. Flue gas stream comprising SO bearing 4500 ppm, SO bearing 300 ppm, 70 ppm NO, and 50 ppm NO brought into contact with two scrubbing solutions as M, and a complex absorbent of M/M at varying respective ratios.

View Article and Find Full Text PDF

African elephants () are megaherbivores of the African savannas requiring extensive ranges that can provide critical resources for their survival and reproduction at different spatiotemporal scales. We studied seasonal differences in home range sizes and daily distance to the nearest surface water sources by five male and 10 female African elephants in the eastern Okavango Panhandle in northern Botswana between 2014 and 2017. We hypothesized that (i) elephant home ranges would be larger in the wet than in the dry season (because critical resources tend to be less localized in the wet than in the dry season), (ii) the daily distance of the elephants to the nearest ephemeral surface water sources would be larger in the dry than in the wet season because many of the ephemeral water sources would be dry in the dry season and elephants would start moving towards permanent water sources such as rivers, and lastly (iii) that the differences in elephant home ranges and daily distance to water would differ between sexes.

View Article and Find Full Text PDF

Magnusiomyces capitatus is an environmental fungus found in soil, water, air, plants, and dairy products which may cause opportunistic infections in patients with haematological disorders resulting in high mortality rates. This series of the first reported cases in Ireland discusses investigation of two patients with underlying haematological disorders, hospitalised in the Irish National Adult Stem Cell Transplant Unit (NASCTU), who developed line-related fungaemias with M. capitatus within a three-month period.

View Article and Find Full Text PDF

This investigation presents extensive computational analyses of the compressible flow near ramp injector with double circular injectors at supersonic combustor of scramjet engine. Comparison of the fuel mixing and fuel jet penetration of hydrogen jet are done for two injector configurations at free stream Mach number of 2. The simulation of the supersonic flow near ramp injector is done via solving RANS equations with computational fluid dynamic technique.

View Article and Find Full Text PDF

In this study, we explore an enhancement to the U-Net architecture by integrating SK-ResNeXt as the encoder for Land Cover Classification (LCC) tasks using Multispectral Imaging (MSI). SK-ResNeXt introduces cardinality and adaptive kernel sizes, allowing U-Net to better capture multi-scale features and adjust more effectively to variations in spatial resolution, thereby enhancing the model's ability to segment complex land cover types. We evaluate this approach using the Five-Billion-Pixels dataset, composed of 150 large-scale RGB-NIR images and over 5 billion labeled pixels across 24 categories.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!