The goal of this study was to investigate how corticospinal tract neurons (CTNs) are modulated after repetitive dynamic muscle contractions. To address this question, changes of motor evoked potentials (MEPs) to transcranial magnetic stimulation and background EMG (B.EMG) activities were examined. Subjects were instructed to perform an isometric dynamic index finger abduction as accurately as possible under the target-force-matching tasks (10% or 30% MVC), while MEPs of a first dorsal interosseous (FDI) were elicited during performance of the task. After repetitive dynamic FDI contractions (100 trials), the following remarkable phenomena were observed: (1) both B.EMG activities and MEP amplitudes decreased in proportion to the number of trials, (2) these phenomena were most commonly observed in different conditions, i.e., different force levels and hands (preferred or non-preferred hands), and (3) after repetition of the tasks, the MEP amplitude/B.EMG (MEP/B.EMG) ratio became smaller. Decreases of B.EMG activities with reduction of MEP amplitudes and diminishing MEP/B.EMG ratio might suggest the occurrence of reorganization of input-output properties in CTNs for an efficient performance as a function of motor adaptation. Thus, we conclude that motor adaptation after repetitive dynamic muscle contractions probably occurs less specifically and due to susceptible modulations of spinal motoneurons reflected in the integrative functions of CTNs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-004-2059-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!