Quantification of selective phosphatidylserine oxidation during apoptosis.

Methods Mol Biol

Department of Environmental and Occupational Health, University of Pittsburgh, PA, USA.

Published: February 2005

Membrane phospholipids are gaining increasing attention as important mediators in a variety of signal transduction processes. Oxidation and changes in membrane topography of lipids are probably important elements in the regulation of phospholipid-dependent signaling. Phosphatidylserine (PS), in particular, is implicated in the regulation of macrophage-dependent clearance of apoptotic cell "corpses" in a pathway probably mediated by selective oxidation and translocation of PS in the plasma membrane. Here we describe our highly sensitive and specific assay to measure differential lipid peroxidation in individual phospholipid classes in live cells using metabolic integration of the fluorescent oxidation-sensitive fatty acid analog cis-parinaric acid (cis-PnA) and resolution of specific phospholipids by high-performance liquid chromatography (HPLC). These experimental approaches can provide insight into the roles and mechanisms of PS oxidation in the identification and clearance of apoptotic cells.

Download full-text PDF

Source
http://dx.doi.org/10.1385/1-59259-840-4:449DOI Listing

Publication Analysis

Top Keywords

clearance apoptotic
8
quantification selective
4
selective phosphatidylserine
4
oxidation
4
phosphatidylserine oxidation
4
oxidation apoptosis
4
apoptosis membrane
4
membrane phospholipids
4
phospholipids gaining
4
gaining increasing
4

Similar Publications

Apoptotic clearance by stem cells: molecular mechanisms for recognition and phagocytosis of dead cells.

Signal Transduct Target Ther

December 2024

Department of Cardiology, Angiology, Hemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), Heidelberg University, 68167, Mannheim, Germany.

View Article and Find Full Text PDF

In clinical mastitis of dairy cows, the abnormal accumulation of apoptotic cells (ACs) and subsequent secondary necrosis and inflammation pose significant concerns, with macrophage-mediated efferocytosis, crucial for ACs clearance, remaining unexplored in this context. In nonruminants, MER proto-oncogene tyrosine kinase (MERTK) receptors are essential for efferocytosis and A Disintegrin and Metalloproteinase 17 (ADAM17) is thought to play a role in regulating MERTK integrity. This study aimed to delineate the in situ role of efferocytosis in clinical mastitis, with a particular focus on the interaction between MERTK and ADAM17 in bovine macrophages.

View Article and Find Full Text PDF

Introduction: Ischemia followed by reperfusion in organ transplantations can lead to ischemia-reperfusion (I-R) injury, which is associated with oxidative stress and inflammatory responses. Alpha-pinene is an organic terpene with well-known antioxidant, anti-inflammatory, and anti-apoptotic properties. This study examines the preventive effects of alpha-pinene against renal I-R-induced kidney dysfunction, oxidative and inflammatory status, apoptosis, and histopathology changes.

View Article and Find Full Text PDF

C1q, the key component of the classical pathway of the Complement system, is known for its vast functional activity including clearance of apoptotic cells. The binding of C1q to apoptotic blebs occurs via an interaction with the phosphatidylserine externalized on the cell surface. In this study, we characterized the interaction between C1q and phosphatidylserine, with emphasis on the structure of the phosphatidylserine-binding site within the globular domains of C1q and the nature of binding of C1q with phosphatidylserine, using both in vitro and in silico methods.

View Article and Find Full Text PDF

Macrophage efferocytosis (clearance of apoptotic cells) is crucial for tissue homeostasis and wound repair, where macrophages secrete factors that promote resolution of inflammation and regenerative signalling. This study examined the role of efferocytic macrophage-associated CCL2 secretion, its influence on mesenchymal stem/progenitor cell (MSPC) chemotaxis, and in vivo cell recruitment using Ccr2 (KO) mice with disrupted CCL2 receptor signalling in two regenerative models: ossicle implants and ulnar stress fractures. Single cell RNA sequencing and PCR validation indicated that efferocytosis of various apoptotic cells at bone injury sites (osteoblasts, pre-osteoblasts, MSPC) upregulated CCL2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!