Background And Purpose: Although the subthalamic nucleus is the most frequently used target for surgical treatment of Parkinson's disease, the criteria on which it can be identified on T2-weighted images have never been clearly defined. This study was conducted to characterize the precise anatomic distribution of T2-weighted hyposignal in the subthalamic region and to correlate this hyposignal with iron content in the subthalamic nucleus.

Methods: The T2-weighted MR imaging acquisitions of 15 patients with Parkinson's disease were fused with a digitized version of the Schaltenbrand and Wahren anatomic atlas. The MR signal intensity within the anatomic limits of the subthalamic nucleus was evaluated. An anatomic specimen obtained at autopsy was used to evaluate iron content.

Results: In all patients, the subthalamic nucleus was hypointense on both sides in the anterior half of the nucleus. At more posterior levels of the nucleus, hypointensity was less frequently observed (20-80%). Hypointensity was never observed at the most posterior pole. Iron was present in the anteromedial part of the nucleus but absent at the most posterior levels.

Conclusion: The hypointense signal intensity located lateral to the red nucleus and dorsolateral to the substantia nigra correlates with the presence of iron and corresponds anatomically to the subthalamic nucleus. It can therefore be used as a landmark for electrode implantation in patients with Parkinson's disease. It should, however, be emphasized that although hypointensity was always present in the anterior half of the subthalamic nucleus, the posterior part of the nucleus was not visible in most cases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7976405PMC

Publication Analysis

Top Keywords

subthalamic nucleus
24
parkinson's disease
12
nucleus
10
subthalamic
8
nucleus hypointense
8
patients parkinson's
8
signal intensity
8
anterior half
8
nucleus posterior
8
t2-weighted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!