The impact of isoflurane during simulated ischemia/reoxygenation on intracellular calcium, contractile function, and arrhythmia in ventricular myocytes.

Anesth Analg

*Department of Anesthesia Research, Mayo Clinic, Rochester, Minnesota, †Division of Cardiothoracic and Vascular Anaesthesia and Intensive Care, University Hospital Vienna, Austria, and ‡Department of Anaesthesiology and Intensive Care, University of Münster, Germany.

Published: November 2004

Some of isoflurane's cellular actions, such as interference with intracellular Ca(2+) handling, inhibition of the respiratory chain, and the capability to produce oxygen radicals, could result in impaired cellular function during ischemia/reoxygenation (I/R). We investigated the effects of isoflurane applied during I/R on intracellular Ca(2+), oxygen radical formation, arrhythmic events, and contractile function in rat cardiomyocytes. Single ventricular myocytes were subjected to 30 min of simulated ischemia followed by 30 min of reoxygenation. After baseline measurements, isoflurane-treated cells were exposed to 1 minimum alveolar concentration of isoflurane in air, whereas control cells were exposed to air only. Cytosolic Ca(2+) overload was observed in the isoflurane group (P < 0.05). During ischemia, systolic cell shortening decreased in both groups. In the isoflurane group, arrhythmic events and hypercontracture occurred more often during I/R, and the recovery of contractility during reoxygenation was less marked (P < 0.05). Furthermore, increased oxygen radical generation was detected in isoflurane-treated myocytes during reoxygenation (P < 0.05). Isoflurane given during I/R in this study induced intracellular Ca(2+) accumulation and impaired cell function. These potentially harmful effects were associated with a diminished Ca(2+) clearance and an accelerated oxygen radical production.

Download full-text PDF

Source
http://dx.doi.org/10.1213/01.ANE.0000134803.28029.7EDOI Listing

Publication Analysis

Top Keywords

intracellular ca2+
12
oxygen radical
12
contractile function
8
ventricular myocytes
8
arrhythmic events
8
cells exposed
8
isoflurane group
8
ca2+
5
isoflurane
5
impact isoflurane
4

Similar Publications

MYO18B promotes lysosomal exocytosis by facilitating focal adhesion maturation.

J Cell Biol

March 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.

Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis.

View Article and Find Full Text PDF

Background: Nitric oxide (NO) is involved in synaptic transmission and cerebral plasticity, playing a role in the memory process. However, in states of brain inflammation, hypoxia, or ischemia, there is induction of inducible nitric oxide synthase (iNOS) expression by astrocytes and pyramidal cells in the brain. Under conditions of chronic activation, there is a decoupling of iNOS dimers, leading to a massive generation of superoxide anion and peroxynitrite, O2.

View Article and Find Full Text PDF

Background: The roles of Aβ in the pathogenesis of Alzheimer 's disease (AD) include disruption of synaptic communication/function and synaptic plasticity mechanisms thought to underlie learning and memory. Exactly how these abnormal processes arise is incompletely understood, but evidence suggests that dysregulation of intracellular Ca levels is involved in alterations of neuronal excitability, synaptic remodeling, and neurodegeneration in AD. Our lab has focused on the potential involvement of voltage-gated potassium channels (VGKCs) in these processes, particularly Kv1.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a complex neurodegenerative disorder marked by progressive memory loss and cognitive decline. The precise molecular mechanisms underlying AD pathogenesis remain uncertain, underscoring the need for further investigation to identify novel therapeutic targets. We recently demonstrated that mitochondrial calcium (Ca) overload significantly contributes to the development of AD, capable of independently driving AD-like pathology.

View Article and Find Full Text PDF

Background: Globose neurofibrillary tangles (NFTs) are found in subcortical areas of post-mortem brain from individuals with the second most common primary tauopathy, progressive supranuclear palsy (PSP). The degree of cognitive impairment in secondary tauopathies such as Alzheimer's disease (AD) correlates with the presence of NFTs, which originally appear in the entorhinal cortex before spreading throughout the hippocampus. In contrast, the degree of hippocampal tau pathology in PSP is thought to be limited, consistent with the view that cognitive impairment in PSP is predominantly subcortical.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!