Metabolism, pharmacokinetics, and protein covalent binding of radiolabeled MaxiPost (BMS-204352) in humans.

Drug Metab Dispos

Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Route 206 and Province Line Road, Princeton, NJ 08543-4000, USA.

Published: January 2005

MaxiPost [(3S)-(+)-(5-chloro-2-methoxyphenyl)-1,3-dihydro-3-fluoro-6-(trifluoromethyl)-2H-indole-2-one); BMS-204352] is an investigational maxi-K channel opener to treat ischemic stroke. This study reports the disposition, metabolism, pharmacokinetics, and protein covalent binding of (14)C-labeled MaxiPost in healthy male volunteers as well as in dogs and rats. After each human subject received a single dose of 10 mg (14)C-labeled BMS-204352 (50 microCi) as a 5-ml intravenous infusion lasting 5 min, the plasma radioactivity concentrations showed a unique profile, wherein the concentration appeared to increase initially, followed by a terminal decline. The mean terminal t(1/2) of plasma radioactivity (259 h) was prolonged compared with that of unchanged parent (37 h). Furthermore, the extractability of radioactivity in plasma decreased over time, reaching approximately 20% at 4 h after dosing. The unextractable radioactivity was covalently bound to plasma proteins through a des-fluoro-des-methyl BMS-204352 lysine adduct. Unchanged BMS-204352 and minor metabolites were identified in plasma extract following protein precipitation. The recovery of the radioactive dose in urine and feces was nearly complete in 14-day collections (approximately 37% in urine and 60% in feces). The N-glucuronide of the parent was the prominent metabolite in urine (16.5% of dose), whereas the parent was a major drug-related component in feces (11% of dose). Similar disposition, metabolism, pharmacokinetic, and protein covalent binding properties of (14)C-labeled BMS-204352 were observed in humans, dogs, and rats.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.104.001412DOI Listing

Publication Analysis

Top Keywords

protein covalent
12
covalent binding
12
metabolism pharmacokinetics
8
pharmacokinetics protein
8
disposition metabolism
8
dogs rats
8
14c-labeled bms-204352
8
plasma radioactivity
8
bms-204352
5
plasma
5

Similar Publications

Arsenic trioxide (ATO), the active ingredient in Chinese arsenic, effectively inhibits hepatocellular carcinoma (HCC) cell growth, but its clinical application is limited by the lack of a targeted delivery system. Phosphatidylinositol proteoglycan 3 (GPC3) is specifically expressed in HCC, and CPP44 is a cell-penetrating peptide that targets HCC cells. Here, we developed a liposome incorporating ATO with dual surface modifications of anti-GPC3 antibody and CPP44.

View Article and Find Full Text PDF

Simultaneous measurement of fentanyl, fentanyl analogues and other drugs of abuse by multiplex bead assay.

Toxicol Mech Methods

January 2025

Centers for Disease Control and Prevention, Division of Science Integration, Risk Evaluation Branch, National Institute for Occupational Safety and Health, Cincinnati, OH, USA.

Quantification of illicit drugs and controlled substances, in urine or as surface contamination, is often performed using expensive analytical techniques such as liquid chromatography with tandem mass spectrometry (LC-MS/MS). A time and cost-effective semi-quantitative surface-wipe and urine screening multiplex immunoassay for fentanyl and its analogues was developed in this investigation. We previously created a surface wipe multiplex immunoassay for methamphetamine, caffeine, cocaine, tetrahy-drocannabinol (THC) and oxycodone.

View Article and Find Full Text PDF

Discovery of DCAF16 Binders for Targeted Protein Degradation.

ACS Chem Biol

January 2025

Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.

Conventional small-molecule drugs primarily operate by inhibiting protein function, but this approach is limited when proteins lack well-defined ligand-binding pockets. Targeted protein degradation (TPD) offers an alternative approach by harnessing cellular degradation pathways to eliminate specific proteins. Recent studies have expanded the potential of TPD by identifying additional E3 ligases, with DCAF16 emerging as a promising candidate for facilitating protein degradation through both proteolysis-targeting chimera (PROTAC) and molecular glue mechanisms.

View Article and Find Full Text PDF

Copper-dependent halogenase catalyses unactivated C-H bond functionalization.

Nature

January 2025

Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.

Carbon-hydrogen (C-H) bonds are the foundation of essentially every organic molecule, making them an ideal place to do chemical synthesis. The key challenge is achieving selectivity for one particular C(sp)-H bond. In recent years, metalloenzymes have been found to perform C(sp)-H bond functionalization.

View Article and Find Full Text PDF

Fabricating an antioxidant and bacteriostatic soy protein isolate film double-crosslinked via dialdehyde cellulose nanofibers and Tara tannins for beef tallow and cooked pork preservation.

Int J Biol Macromol

January 2025

Key Laboratory of Bio-based Materials Science and Technology of Ministry of Education, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, PR China. Electronic address:

Although Tara tannins (TT) have given soy protein isolate (SPI) film antioxidant properties, the mechanical and barrier properties were not significantly improved. In this work, dialdehyde cellulose nanofibers (DACNF) were obtained through oxidation using sodium periodate and incorporated into SPI film with TT to obtain antioxidant and bacteriostatic properties. With increased DACNF content, the anti-swelling, mechanical and barrier properties of SPI film were enhanced due to a double-crosslinked structure based on the covalent and hydrogen bonds formed between DACNF, TT and SPI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!