The goal of these studies was to engineer a synthetic CD33 peptide with enhanced immunogenicity for the induction of acute myeloid leukemia (AML)-specific CTLs. Eight modified CD33 peptides YLISGDSPV, YIGSGDSPV, YIIIGDSPV, YIILGDSPV, YIISGISPV, YIISGDLPV, YIISGDSWV and YIISGDSPL were designed for increased HLA-A2.1 or T cell receptor affinity and compared with the native CD33(65-73) peptide, AIISGDSPV, for enhanced immunogenicity. The YLISGDSPV peptide was found to be the most immunogenic epitope producing highly cytolytic CTLs against AML target cells. The CTLs generated withYLISGDSPV peptide showed CD33 peptide-specificity through targeting of both native (AIISGDSPV) and modified (YLISGDSPV) peptide presenting EBV-BLCL. The CTL cultures displayed a distinct phenotype consisting of a high percentage of activated memory (CD69(+)/CD45RO(+))-CD8(+)and a low percentage of naive (CD45RA(+)/CCR7(+))-CD8(+)cells. In addition, T-cell clones specific to the YLISGDSPV peptide were isolated and characterized to target AML cells. The clones exhibited both HLA-A2.1-restricted and AML cell-specific cytotoxicity that was mediated through a granule-dependent pathway. More importantly, the CTL clones did not lyse or inhibit the proliferation of normal CD34(+) progenitor cells. In conclusion, we report on the identification of a highly immunogenic heteroclitic YLISGDSPV CD33 epitope that is a promising candidate for immunotherapy targeting AML.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1078-0432.CCR-04-0322 | DOI Listing |
Clin Cancer Res
October 2004
Section of Bone Marrow Transplant and Cell Therapy, Rush University Medical Center, Chicago, Illinois, USA.
The goal of these studies was to engineer a synthetic CD33 peptide with enhanced immunogenicity for the induction of acute myeloid leukemia (AML)-specific CTLs. Eight modified CD33 peptides YLISGDSPV, YIGSGDSPV, YIIIGDSPV, YIILGDSPV, YIISGISPV, YIISGDLPV, YIISGDSWV and YIISGDSPL were designed for increased HLA-A2.1 or T cell receptor affinity and compared with the native CD33(65-73) peptide, AIISGDSPV, for enhanced immunogenicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!