Pulmonary surfactant biophysical properties are best described by surface tension and surface viscosity. Besides lecithin, surfactant contains a variety of minor lipids, such as plasmalogens, polyunsaturated fatty acid-containing phospholipids (PUFA-PL), and cholesterol. Plasmalogens and cholesterol improve surface properties of lipid mixtures significantly. High PUFA-PL and plasmalogen content in tracheal aspirate of preterm infants reduces the risk of developing chronic lung disease. Different preparations are available for exogenous surfactant substitution; however, little is known about lipid composition and surface viscosity. Thus lipid composition and surface properties (measured by oscillating drop surfactometer) of three commercial surfactant preparations (Alveofact, Curosurf, Survanta) were compared. Lipid composition exhibited strong differences: Survanta had the highest proportion of disaturated PL and total neutral lipids and the lowest proportion of PUFA-PL. Highest plasmalogen and PUFA-PL concentrations were found in Curosurf (3.8 +/- 0.1 vs. 26 +/- 1 mol%) compared with Alveofact (0.9 +/- 0.3 vs. 11 +/- 1) and Survanta (1.5 +/- 0.2 vs. 6 +/- 1). In Survanta samples, viscosity increased >8 x 10(-6) kg/s at surface tension of 30 mN/m. Curosurf showed only slightly increased surface viscosity below surface tensions of 25 mN/m, and viscosity did not reach 5 x 10(-6) kg/s. By adding defined PL to Survanta, we obtained a Curosurf-like lipid mixture (without plasmalogens) that exhibited biophysical properties like Curosurf. Different lipid compositions could explain some of the differences in surface viscosity. Therefore, PL pattern and minor surfactant lipids are important for biophysical activity and should be considered when designing synthetic surfactant preparations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajplung.00176.2004 | DOI Listing |
Polymers (Basel)
December 2024
Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
In this study, we present novel, vitrimeric and biobased scaffolds that are designed for hard tissue applications, composed of acrylated, epoxidized soybean oil (AESO) and reinforced with bioactive glass that is Tellurium doped (BG-Te) and BG-Te silanized, to tune the mechanical and antibacterial properties. The manufacture's method consisted of a DLP 3D-printing method, enabling precise resolution and the possibility to manufacture a hollow and complex structure. The resin formulation was optimized with a biobased, reactive diluent to adjust the viscosity for an optimal 3D-printing process.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Mechanical Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil.
Recently, the liquid composite molding technique (LCM) has been used for producing fiber-reinforced polymer composites, since it allows the molding of complex parts, presenting good surface finishing and control of the mechanical properties of the product at the end of the process. Studies in this area have been focused on resin transfer molding (RTM), specifically on the resin rectilinear infiltration through the porous preform inserted in the closed cavity neglecting the sorption effect of the polymeric fluid by the reinforcement. Thus, the objective of this work is to predict resin radial flow in porous media (fibrous preform), including the effect of resin sorption by fibers considering a one-dimensional approach.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China.
Shear-thickening fluid (STF) is widely applied in various practical engineering fields due to its rheological properties of increased viscosity under load. We investigated the integration of STF with fiber brushes to prepare a novel composite material for polishing applications. The impact of composite material properties is studied in surface finish, specifically roughness and morphology, across flat and uneven surfaces.
View Article and Find Full Text PDFMolecules
December 2024
School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China.
In this paper, the enhancement of thermochemical energy storage by alkali metal chloride salts-doped Ca-based sorbents is revealed by experiments and DFT calculations. The results indicate that NaCl and KCl doping increases the reaction rate and cycle stability. Compared to CaO, the conversion of NaCl-CaO and KCl-CaO after one cycle is increased by 59.
View Article and Find Full Text PDFMolecules
December 2024
Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland.
Hydrophobization could improve the moisture resistance of biopolymer-based materials, depending on the methods and materials used, providing benefits for packaging applications. The aim of this study was to compare the effect of increasing concentrations (0-2.0%) of candelilla wax (CW) and oleic acid (OA) on the structural and physicochemical properties, including water affinity, of glycerol-plasticized pea protein isolate (PPI) films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!