The capability to image single microbial cell surfaces at nanometer scale under native conditions would profoundly impact mechanistic and structural studies of pathogenesis, immunobiology, environmental resistance, and biotransformation. Here, using in vitro atomic force microscopy, we have directly visualized high-resolution native structures of bacterial endospores, including the exosporium and spore coats of four Bacillus species in air and water environments. Our results demonstrate that the mechanisms of spore coat self-assembly are similar to those described for inorganic and macromolecular crystallization. The dimensions of individual Bacillus atrophaeus spores decrease reversibly by 12% in response to a change in the environment from fully hydrated to air-dried state, establishing that the dormant spore is a dynamic physical structure. The interspecies distributions of spore length and width were determined for four species of Bacillus spores in water and air environments. The dimensions of individual spores differ significantly depending upon species, growth regimes, and environmental conditions. These findings may be useful in the reconstruction of environmental and physiological conditions during spore formation and for modeling the inhalation and dispersal of spores. This study provides a direct insight into molecular architecture and structural variability of bacterial endospores as a function of spatial and developmental organizational scales.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1305037 | PMC |
http://dx.doi.org/10.1529/biophysj.104.049312 | DOI Listing |
The eukaryotic genome is packaged into chromatin, which is composed of a nucleosomal filament that coils up to form more compact structures. Chromatin exists in two main forms: euchromatin, which is relatively decondensed and enriched in transcriptionally active genes, and heterochromatin, which is condensed and transcriptionally repressed . It is widely accepted that chromatin architecture modulates DNA accessibility, restricting the access of sequence-specific, gene-regulatory, transcription factors to the genome.
View Article and Find Full Text PDFChronically persistent viruses are integral components of the organismal ecosystem in humans and animals . Many of these viruses replicate and accumulate within the cell nucleus . The nuclear location allows viruses to evade cytoplasmic host viral sensors and promotes viral replication .
View Article and Find Full Text PDFComputerized chest tomography (CT)-guided screening in populations at risk for lung cancer has increased the detection of preinvasive subsolid nodules, which progress to solid invasive adenocarcinoma. Despite the clinical significance, there is a lack of effective therapies for intercepting the progression of preinvasive to invasive adenocarcinoma. To uncover determinants of early disease emergence and progression, we used integrated single-cell approaches, including scRNA-seq, multiplexed imaging mass cytometry and spatial transcriptomics, to construct the first high-resolution map of the composition, lineage/functional states, developmental trajectories and multicellular crosstalk networks from microdissected non-solid (preinvasive) and solid compartments (invasive) of individual part-solid nodules.
View Article and Find Full Text PDFUnlabelled: The rat offers a uniquely valuable animal model in neuroscience, but we currently lack an individual-level understanding of the in vivo rat brain network. Here, leveraging longitudinal measures of cortical magnetization transfer ratio (MTR) from in vivo neuroimaging between postnatal days 20 (weanling) and 290 (mid-adulthood), we design and implement a computational pipeline that captures the network of structural similarity (MIND, morphometric inverse divergence) between each of 53 distinct cortical areas. We first characterized the normative development of the network in a cohort of rats undergoing typical development (N=47), and then contrasted these findings with a cohort exposed to early life stress (ELS, N=40).
View Article and Find Full Text PDFRegen Biomater
December 2024
Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany.
Electrospinning is a remarkably straightforward and adaptable technique that can be employed to process an array of synthetic and natural materials, resulting in the production of nanoscale fibers. It has emerged as a novel technique for biomedical applications and has gained increasing popularity in the research community in recent times. In the context of tissue repair and tissue engineering, there is a growing tendency toward the integration of biomimetic scaffolds and bioactive macromolecules, particularly proteins and growth factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!