Genetic control of seed dormancy in barley (Hordeum vulgare L.) has mostly been described in terms of quantitative variation. Although some molecular markers for dormancy QTL have been identified, the corresponding genes involved in the regulation of the process have not been cloned. Induced barley mutants may constitute useful material to study the physiology and genetics of seed dormancy. The objective of this study was to identify the genetic control of this trait in a mutant (TL43) produced in the barley cv. Triumph. This mutant was selected for reduced dormancy and reduced sensitivity to abscisic acid (ABA). Two sets of F6 barley lines were selected for high and low levels of dormancy from a cross between the original dormant parent and the sodium azide-induced non-dormant TL43 mutant. Unexpectedly, given the near-isogenic nature of these two genotypes, polymorphism was detected for an SSR located in the centromeric region of chromosome 6(6H) out of a total of 92 molecular markers evenly distributed along the genome. Fortunately, upon three cycles of intensive divergent selection, every dormant and non-dormant F5 line consistently showed the genotype for this region identical to Triumph and TL43, respectively. Based on the mutagenic effect presumably attributed to sodium azide, mostly single point mutations, it cannot be clearly established if such extensive genomic variation on chromosome 6(6H) is due to the mutagenic treatment or may be an introgression from an unknown source. The means that could originate such heterogeneity are discussed; however, regardless of its origin, this genomic region shows a strong association with the expression of seed dormancy and provides an additional genetic locus for further studies of the mechanistic basis of this complex trait. In addition, since TL43 shows reduced sensitivity to ABA, the response to this hormone was determined on the F6 seed from the two sets of selected F5 lines. The results confirmed that the initial level of dormancy in the seed lot is the most important factor in determining ABA sensitivity.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/eri005DOI Listing

Publication Analysis

Top Keywords

chromosome 66h
12
seed dormancy
12
centromeric region
8
region chromosome
8
dormancy
8
genetic control
8
molecular markers
8
reduced sensitivity
8
barley
5
seed
5

Similar Publications

Background: Monocytes are key mediators of innate immunity to infection, undergoing profound and dynamic changes in epigenetic state and immune function which are broadly protective but may be dysregulated in disease. Here, we aimed to advance understanding of epigenetic regulation following innate immune activation, acutely and in endotoxin tolerant states.

Methods: We exposed human primary monocytes from healthy donors (n = 6) to interferon-γ or differing combinations of endotoxin (lipopolysaccharide), including acute response (2 h) and two models of endotoxin tolerance: repeated stimulations (6 + 6 h) and prolonged exposure to endotoxin (24 h).

View Article and Find Full Text PDF

Recurrent spontaneous abortion (RSA) is a common cause of infertility, but previous attempts at identifying RSA causative genes have been relatively unsuccessful. Such failure to describe RSA aetiological genes might be explained by the fact that reproductive phenotypes should be considered as quantitative traits resulting from the intricate interaction of numerous genetic, epigenetic and environmental factors. Here, we studied an interspecific recombinant congenic strain (IRCS) of Mus musculus from the C57BL6/J strain of mice harbouring an approximate 5 Mb DNA fragment from chromosome 13 from Mus spretus mice (66H-MMU13 strain), with a high rate of embryonic resorption (ER).

View Article and Find Full Text PDF

Background: Genetic determinism of cranial morphology in the mouse is still largely unknown, despite the localization of putative QTLs and the identification of genes associated with Mendelian skull malformations. To approach the dissection of this multigenic control, we have used a set of interspecific recombinant congenic strains (IRCS) produced between C57BL/6 and mice of the distant species Mus spretus (SEG/Pas). Each strain has inherited 1.

View Article and Find Full Text PDF

The purpose of this study was to determine a practical method in Wapiti (Cervus elaphus) of using predetermined sexed Sika (Cervus nippon) semen. Semen was collected by electro-ejaculation from one stag of proven fertility and transported to the laboratory where it was retained as unsorted (control) or was separated into X- and Y-chromosome-bearing sperm using a modified high-speed cell sorter. Wapiti hinds (n=81) were inseminated into the uterus by rectum manipulation with 1 x 10(6) (X1 and Y1 group, respectively) or 2 x 10(6) (X2 and Y2 group, respectively) of sorted frozen-thawed and 1 x 10(7) non-sorted frozen-thawed (a commercial dose control) Sika motile sperm 60-66h after removal of intra-vaginal progesterone-impregnated CIDR devices and administration of 700IU of PMSG at the time of CIDR removal.

View Article and Find Full Text PDF

To assess the genetic basis of the skull shape variation and morphological integration in mice, we have used a tool based on the cross between the distantly related mouse species Mus spretus (SEG/Pas strain) and the laboratory strain C57BL/6 called interspecific recombinant congenic strains (IRCSs). The genome of each IRCS consists on average of 1.3% of SEG/Pas derived sequences, located on multiple chromosomes as small-sized, DNA segments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!