Listeria seeligeri is a non-pathogenic bacterium coming under the genus Listeria. As this bacterium resembles other Listeria species such as L. monocytogenes and L. ivanovii that are pathogenic to man and animals, it is important that rapid and precise identification techniques be available for L. seeligeri in cases where such determination is desirable. A specific molecular test on the basis of a uniquely present gene region in L. seeligeri will be of particular value under the circumstances. In this report, after comparative screening of genomic DNA from six Listeria species by dot blot hybridization, we isolated one L. seeligeri-specific clone (lse24-315) that contains an insert of 1538 bp. Using primers (lse24-315F and lse24-315R) derived from this clone, we showed that a specific PCR product of 375 bp was generated from genomic DNA of L. seeligeri strains only, but not of other Listeria species or common bacteria. Therefore, the PCR employing primers lse24-315F and lse24-315R provides a rapid, sensitive and specific method for distinguishing L. seeligeri from other Listeria and common bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.resmic.2004.05.013 | DOI Listing |
Cell Death Dis
January 2025
Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy unit, University of Fribourg, CH-1700, Fribourg, Switzerland.
Cell death mediated by executioner caspases is essential during organ development and for organismal homeostasis. The mechanistic role of activated executioner caspases in antibacterial defense during infections with intracellular bacteria, such as Listeria monocytogenes, remains elusive. Cell death upon intracellular bacterial infections is considered altruistic to deprive the pathogens of their protective niche.
View Article and Find Full Text PDFFront Microbiol
January 2025
College Food Science and Light Industry, Nanjing Tech University, Nanjing, China.
A colloidal gold immunochromatographic assay (ICA) based on a dual-antibody sandwich method was developed for the rapid and convenient detection of () antigens in the early stages of infection. Monoclonal antibodies designed as 5B3 targeting the conserved region of 56 kDa outer membrane protein in various strains of were generated through cell fusion and screening techniques and combined with previously prepared polyclonal antibodies as detection antibodies to establish the ICA. Colloidal gold and polyclonal antibody-colloidal gold complexes were synthesized under optimized conditions.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia. Electronic address:
The main objective of this study is to prepare sodium alginate (SA)-based biofilms incorporated with watercress oil (WCO) as an antimicrobial material for sustainable food packaging. The physicochemical, antioxidant, and antibacterial properties of the prepared bio-based films were investigated. The antioxidant activity showed a remarkable increase, with DPPH inhibition increasing from 13.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China.
Despite significant progress in cancer treatment, traditional therapies still face considerable challenges, including poor targeting, severe toxic side effects, and the development of resistance. Recent advances in biotechnology have revealed the potential of bacteria and their derivatives as drug delivery systems for tumor therapy by leveraging their biological properties. Engineered bacteria, including , , and , along with their derivatives─outer membrane vesicles (OMVs), bacterial ghosts (BGs), and bacterial spores (BSPs)─can be loaded with a variety of antitumor agents, enabling precise targeting and sustained drug release within the tumor microenvironment (TME).
View Article and Find Full Text PDFMicrobiome
January 2025
Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
Background: Microbial spoilage in meat impedes the development of sustainable food systems. However, our understanding of the origin of spoilage microbes is limited. Here, we describe a detailed longitudinal study that assesses the microbial dynamics in a meat processing facility using high-throughput culture-dependent and culture-independent approaches to reveal the diversity, dispersal, persistence, and biofilm formation of spoilage-associated microbes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!