Metabolic fate of the Ah receptor ligand 6-formylindolo[3,2-b]carbazole.

Chem Biol Interact

Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm, Sweden.

Published: October 2004

The physiological role of the aryl hydrocarbon receptor (AhR), a member of the basic helix-loop-helix PER-ARNT-SIM (PAS) transcription factor family is not known. We have suggested that the AhR is involved in light signaling through binding of photoproducts with high AhR affinity. This suggestion is based on (i) the high AhR affinity of the tryptophan photoproduct formylindolo[3,2-b]carbazole (FICZ), (ii) the induction of rapid and transient expression of AhR-regulated genes by FICZ and by extracts of UV-irradiated tryptophan as well as (iii) the fact that light induces the AhR-regulated cytochrome P450s CYP1A1, CYP1B1 and CYP2S1. The transient mRNA expression caused by light and tryptophan photoproducts suggests that the biotransformation enzymes induced by AhR activation take part in a metabolic degradation of the natural AhR ligand. This study aimed at identifying the involvement of phase I and phase II enzymes in the metabolic degradation of FICZ. A cytochrome P450-dependent metabolism of FICZ giving rise to preferentially mono- and di-hydroxylated derivatives has earlier been reported. In the present study, rat and human hepatic S9 mixes were employed together with specific enzyme inhibitors and cofactors. Compared to the Aroclor-induced rat liver S9, the non-induced rat liver S9 and the human liver S9 caused a more complex metabolite profile of FICZ. The CYP1A1 enzyme was confirmed to be the most important enzyme for the first step in the metabolism. CYP1A2 was found to have overlapping specificity with CYP1A1 being able to form the same major metabolites although with different kinetics. CYP1B1 turned out to be preferentially involved in the further metabolism of dihydroxylated metabolites. Microsomal epoxide hydrolase, and as yet not identified forms of sulphotransferases and glucuronosyltransferases were also found to take part in the metabolic degradation of FICZ. Thus, tryptophan photoproducts fit into a model in which the ligand-activated AhR signaling is autoregulated by the induced metabolic enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2004.08.005DOI Listing

Publication Analysis

Top Keywords

metabolic degradation
12
high ahr
8
ahr affinity
8
tryptophan photoproducts
8
degradation ficz
8
rat liver
8
ahr
7
ficz
6
metabolic
5
metabolic fate
4

Similar Publications

The main objective of this prospective, multicenter study (REVEAL-CP) was to test children with cerebral palsy-like signs and symptoms for raised 3--methyldopa (3-OMD) blood levels, a biomarker for aromatic L-amino acid decarboxylase deficiency (AADCd). A secondary objective was to characterize the molecular basis for the defective aromatic L-amino acid decarboxylase (AADC) gene product. Patients were identified in pediatric secondary and tertiary care hospitals through database searches and personal communication.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a rare genetic disorder that affects multiple systems in the body and is the most prevalent congenital syndrome, leading to bone marrow failure. Twenty-two genes have been identified as contributors to the disease. Significant advancements have been made in the past 2 decades in understanding the genetic and pathophysiological processes involved.

View Article and Find Full Text PDF

The distribution and bioaccumulation of environmental pollutants are essential to understanding their toxicological mechanism. However, achieving spatial resolution at the subtissue level is still challenging. Perfluorooctanesulfonate (PFOS) is a persistent environmental pollutant with widespread occurrence.

View Article and Find Full Text PDF

Distinct tau amyloid assemblies underlie diverse tauopathies but defy rapid classification. Cell and animal experiments indicate tau functions as a prion, as different strains propagated in cells cause unique, transmissible neuropathology after inoculation. Strain amplification requires compatibility of the monomer and amyloid template.

View Article and Find Full Text PDF

Dynamic molecular architecture of the synaptonemal complex.

Sci Adv

January 2025

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.

During meiosis, pairing between homologous chromosomes is stabilized by the assembly of the synaptonemal complex (SC). The SC ensures the formation of crossovers between homologous chromosomes and regulates their distribution. However, how the SC regulates crossover formation remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!