The activities of superoxide dismutase, glutathione peroxidase (GPX) and catalase--the enzymatic scavengers of reactive oxygen species and the activities of xanthine oxidoreductase and xanthine oxidase, an enzyme known to generate reactive oxygen species, were studied in the corneas of normal rabbit eyes of various ages (1 month--young eyes; 4-9.5 months--young adult eyes; 2.0-2.75 years--middle aged eyes; 3.0-5.0 years--aged eyes). The activities of GPX, superoxide dismutase, xanthine oxidoreductase and xanthine oxidase were investigated biochemically in the scraped corneal epithelium. Catalase activity was detected histochemically in the corneal epithelium and endothelium. The results show that young corneas revealed lower activities of all the antioxidant enzymes investigated than did young adult corneas, in which enzymatic activities reached their maximum. In middle-aged corneas, GPX and catalase activities remained approximately at the same levels as seen in young adult corneas, whereas superoxide dismutase activity was decreased. In aged corneas, the activities of all antioxidant enzymes were dramatically decreased or even lost (catalase activity in the corneal endothelium). In contrast, xanthine oxidoreductase activity only slightly decreased with age and the xanthine oxidase proportion of total xanthine oxidoreductase remained unchanged. GPX, superoxide dismutase and catalase are important antioxidant enzymes protecting the cornea against the oxidative damage. Because the activities of these enzymes are lower in young animals and greatly reduced in aged animals, it is suggested that young and particularly aged corneas might be more susceptible to oxidative stress than are young adult corneas. This presumption is supported by the fact that the activities of prooxidant enzymes (xanthine oxidoreductase/xanthine oxidase) are only slightly decreased in aged corneas as compared to young adult corneas so that some imbalance between antioxidant and prooxidant enzymes exists already in the normal aged corneas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exger.2004.08.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!