The single-crystal X-ray structures of [XF(6)][Sb(2)F(11)] (X = Cl, Br, I) have been determined and represent the first detailed crystallographic study of salts containing the XF(6)(+) cations. The three salts are isomorphous and crystallize in the monoclinic space group P2(1)/n with Z = 4: [ClF(6)][Sb(2)F(11)], a = 11.824(2) A, b = 8.434(2) A, c = 12.088(2) A, beta = 97.783(6) degrees , V = 1194.3(4) A(3), R(1) = 0.0488 at -130 degrees C; [BrF(6)][Sb(2)F(11)], a = 11.931(2) A, b = 8.492(2) A, c = 12.103(2) A, beta = 97.558(4) degrees , V = 1215.5(4) A(3), R(1) = 0.0707 at -130 degrees C; [IF(6)][Sb(2)F(11)], a = 11.844(1) A, b = 8.617(1) A, c = 11.979(2) A, beta = 98.915(2) degrees , V = 1207.8(3) A(3), R(1) = 0.0219 at -173 degrees C. The crystal structure of [IF(6)][Sb(2)F(11)] was also determined at -100 degrees C and was found to crystallize in the monoclinic space group P2(1)/m with Z = 4, a = 11.885(1) A, b = 8.626(1) A, c = 12.000(1) A, beta = 98.44(1), V = 1216.9(2) A(3), R(1) = 0.0635. The XF(6)(+) cations have octahedral geometries with average Cl-F, Br-F, and I-F bond lengths of 1.550(4), 1.666(11) and 1.779(6) [-173 degrees C]/1.774(8) [-100 degrees C] A, respectively. The chemical shifts of the central quadrupolar nuclei, (35,37)Cl, (79,81)Br, and (127)I, were determined for [ClF(6)][AsF(6)] (814 ppm), [BrF(6)][AsF(6)] (2080 ppm), and [IF(6)][Sb(3)F(16)] (3381 ppm) in anhydrous HF solution at 27 degrees C, and spin-inversion-recovery experiments were used to determine the T(1)-relaxation times of (35)Cl (1.32(3) s), (37)Cl (2.58(6) s), (79)Br (24.6(4) ms), (81)Br (35.4(5) ms), and (127)I (6.53(1) ms). Trends among the central halogen chemical shifts and T(1)-relaxation times of XF(6)(+), XO(4)(-), and X(-) are discussed. The isotropic (1)J-coupling constants and reduced coupling constants for the XF(6)(+) cations and isoelectronic hexafluoro species of rows 3-6 are empirically assessed in terms of the relative contributions of the Fermi-contact, spin-dipolar, and spin-orbit mechanisms. Electronic structure calculations using Hartree-Fock, MP2, and local density functional methods were used to determine the energy-minimized gas-phase geometries, atomic charges, and Mayer bond orders of the XF(6)(+) cations. The calculated vibrational frequencies are in accord with the previously published assignments and experimental vibrational frequencies of the XF(6)(+) cations. Bonding trends within the XF(6)(+) cation series have been discussed in terms of natural bond orbital (NBO) analyses, the ligand close-packed (LCP) model, and the electron localization function (ELF).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic040015oDOI Listing

Publication Analysis

Top Keywords

xf6+ cations
24
degrees
10
structures [xf6][sb2f11]
8
3537cl 7981br
8
7981br 127i
8
electronic structure
8
structure calculations
8
xf6+
8
crystallize monoclinic
8
monoclinic space
8

Similar Publications

Bistable materials with multiphysical channels, such as optical, electrical, and magnetic properties, have been paid dramatic attention due to their alternativity of the signal status in electronic devices. Herein, three stable supramolecular radicals ([(NH-TEMPO)(18-crown-6)][XF] (, X = P; , X = As; , X = Sb)) were synthesized and characterized. The former two molecules present ferroelectric phase transitions around 381.

View Article and Find Full Text PDF

The unsymmetrical coordination of gold(I) by 2,2'-bipyridine (bipy) in some planar, three-coordinate cations has been examined by crystallographic and computational studies. The salts [(PhP)Au(bipy)]XF (X = P, As, Sb) form an isomorphic series in which the differences in Au-N distances range from 0.241(2) to 0.

View Article and Find Full Text PDF

Anion size control of the packing in the metallic versus semiconducting chiral radical cation salts (DM-EDT-TTF)XF (X = P, As, Sb).

Chem Commun (Camb)

October 2016

Université d'Angers, CNRS, Laboratoire MOLTECH-Anjou, UMR 6200, UFR Sciences, Bât. K, 2 Bd. Lavoisier, 49045 Angers, France.

Control of the structural type in metallic enantiopure and racemic radical cation salts is achieved through hydrogen bonding interactions between the chiral donor DM-EDT-TTF and the XF anions (X = P, As, Sb), determined by the anion size and the chiral information.

View Article and Find Full Text PDF

A series of six anti-perovskite fluorides of the type [Cu(H2O)4]3(M1-xM'xF6)2 (where M and M' = V, Cr, Mn, Fe as well as M = Fe and M' = V and Cr) was synthesized as high-quality single crystals via a mild hydrothermal route. These materials belong to a class of perovskite-based structures in which the anions and cations of the regular ABX3 perovskite structure have exchanged positions. Two complex anions, MF6(3-) and M'F6(3-), occupy the normal A and B cation positions, while three complex cations, [Cu(H2O)4](2+), occupy the normally anionic X positions.

View Article and Find Full Text PDF

Atomization energies at 0 K and heats of formation at 0 and 298 K were predicted for the closed shell compounds XF, XF(2)(-), XF(2)(+), XF(3), XF(4)(-), XF(4)(+), XF(5), XF(6)(-), XF(6)(+) (X = Cl and Br) and XO(+), XOF, XOF(2)(-), XOF(2)(+), XOF(3), XOF(4)(-), XOF(4)(+), XOF(5), XOF(6)(-), XO(2)(+), XO(2)F, XO(2)F(2)(-), XO(2)F(2)(+), XO(2)F(3), XO(2)F(4)(-), XO(3)(+), XO(3)F, XO(3)F(2)(-) (X = Cl, Br, and I) using a composite electronic structure approach based on coupled cluster CCSD(T) calculations extrapolated to the complete basis set limit with additional corrections. The calculated heats of formation are in good agreement with the available experimental data. The calculated heats of formation were used to predict fluoride affinities, fluorine cation affinities, and F(2) binding energies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!