Twenty genetic variations, including seven novel ones, were found in the human SLC22A1 gene, which encodes organic cation transporter 1, from 116 Japanese individuals. The novel variations were as follows: -94C>A in the 5'-untranslated region (A of the translation start codon is numbered +1 in the cDNA sequence; MPJ6_OC1001), 350C>T (MPJ6_OC1004), IVS1-35T>C (MPJ6_OC1006), 561G>A (MPJ6_OC1010), IVS6+75C>G (MPJ6_OC1014), IVS8+108A>G (MPJ6_OC1017), and 1671_1673delATG (MPJ6_OC1020). The frequencies were 0.082 for IVS1-35T>C, 0.022 for IVS6+75C>G, 0.009 for 561G>A, and 0.004 for the other 4 variations. Among them, 350C>T resulted in the amino acid substitution Pro117Leu, which is located in the large extracellular loop between transmembrane domains 1 and 2. Also, we detected the four previously reported nonsynonymous variations, 123C>G (Phe41Leu), 480C>G (Phe160Leu), 1022C>T (Pro341Leu), and 1222A>G (Met408Val) with frequencies of 0.004, 0.086, 0.168, and 0.810, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.2133/dmpk.19.308DOI Listing

Publication Analysis

Top Keywords

human slc22a1
8
slc22a1 gene
8
organic cation
8
cation transporter
8
novel single
4
single nucleotide
4
nucleotide polymorphisms
4
polymorphisms human
4
gene encoding
4
encoding organic
4

Similar Publications

Article Synopsis
  • Proguanil is metabolized into its active form, cycloguanil, through the OCT1 transporter and CYP2C19 enzyme, with genetic variations affecting this process.
  • The study investigated the impact of specific genetic differences (SLC22A1 polymorphisms) on how the drug is processed in the body, focusing on a Korean population.
  • The results indicate that individuals with the CT genotype of the SLC22A1 polymorphism experience higher levels of proguanil but lower levels of cycloguanil, due to reduced hepatic uptake of proguanil.
View Article and Find Full Text PDF

Introduction: : Metformin, an oral hypoglycemic agent, is generally used as the first-line treatment in type 2 diabetes mellitus (T2DM) patients. The response to metformin varies between patients, and its mechanisms remain incompletely understood. Genetic variations in proteins involved in the pharmacodynamics and pharmacokinetics of metformin, like OCT1 transporter, are suspected to explain this difference.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers worldwide, with death rates increasing by approximately 2-3% per year. The high mortality and poor prognosis of HCC are primarily due to inaccurate early diagnosis and lack of monitoring when liver transplantation is not feasible. Fatty acid (FA) metabolism is a critical metabolic pathway that provides energy and signaling factors in cancer, particularly in HCC, and promotes malignancy.

View Article and Find Full Text PDF

Inhibitory effects of flavonoids on organic cation transporter 1: Implications for food/herb-drug interactions and hepatoprotective effects.

Food Chem Toxicol

November 2024

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China. Electronic address:

Organic cation transporter 1 (OCT1, gene symbol: SLC22A1) is mainly responsible for the hepatic uptake of various cationic drugs, closely associated with drug-induced liver injury (DILI). Screening and identifying potent OCT1 inhibitors with little toxicity in natural products is of great value in alleviating OCT1-mediated liver injury. Flavonoids, a group of polyphenols commonly found in foodstuffs and herbal products, have been reported to cause transporter-mediated food/herb-drug interactions (FDIs).

View Article and Find Full Text PDF

Ontogeny of Hepatic Organic Cation Transporter-1 in Rat and Human.

Drug Metab Dispos

October 2024

Drug Delivery and Disposition (S.F., Pa.A., Pi.A.), Laboratory of Cell Metabolism (A.B.S., M.B.), Clinical Pharmacology and Pharmacotherapy (K.A.), Department of Pharmaceutical and Pharmacological Sciences, and Department of Development and Regeneration (K.A.), KU Leuven, Leuven, Belgium; and Department of Hospital Pharmacy, Erasmus University Medical Centre, Rotterdam, The Netherlands (K.A.)

The organic cation transporter (OCT)-1 mediates hepatic uptake of cationic endogenous compounds and xenobiotics. To date, limited information exists on how Oct1/OCT1 functionally develops with age in rat and human livers and how this would affect the pharmacokinetics of OCT substrates in children or juvenile animals. The functional ontogeny of rOct/hOCT was profiled in suspended rat (2-57 days old) and human hepatocytes (pediatric liver tissue donors: age 2-12 months) by determining uptake clearance of 4-[4-(dimethylamino)styryl]-N-methylpyridinium iodide (ASP+) as a known rOct/hOCT probe substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!