Small intestine epithelial cell lines (TR-SIE), which are established from the small intestine of transgenic rats harboring temperature-sensitive simian virus 40 large T-antigen gene (tsA58 Tg rat), were used to characterize the mRNA expression of small intestine transporters. TR-SIE cells had a polygonal morphology and expressed cytokeratin protein and villin mRNA. Although the large T-antigen was strongly expressed at 33 degrees C, this was reduced at 37 and 39 degrees C. Concomitantly, the cell growth was arrested at 37 and 39 degrees C compared with that at 33 degrees C, suggesting that TR-SIE cells are conditionally immortalized cell lines. RT-PCR analysis revealed that TR-SIE cells expressed ABCB1 (mdr1a and mdr1b), ABCB4 (mdr2), ABCC2 (mrp2), ABCC6 (mrp6), ABCG1, ABCG2 (bcrp/mxr), Slc21a7 (Oatp3), Slc15a1 (PepT1), and Slc16a1 (Mct1). Conditionally immortalized rat small intestine epithelial cell lines were established from tsA58 Tg rats and expressed the mRNA of intestinal transporters.

Download full-text PDF

Source
http://dx.doi.org/10.2133/dmpk.19.264DOI Listing

Publication Analysis

Top Keywords

small intestine
20
conditionally immortalized
12
intestine epithelial
12
epithelial cell
12
cell lines
12
tr-sie cells
12
mrna expression
8
immortalized rat
8
rat small
8
large t-antigen
8

Similar Publications

An unusual case of small bowel obstruction (SBO) due to haemostatic gelatin sponge placed during caesarean delivery is presented. A primigravida in their 30s underwent caesarean delivery at 39 weeks, and developed symptoms of SBO from the second postoperative day. Given the worsening condition of the patient and increasing abdominal girth, CT of the abdomen and pelvis was done which revealed features of SBO.

View Article and Find Full Text PDF

Microbiota in the gastrointestinal tract (GIT) consisting of the rumen and hindgut (the small intestine, cecum and colon) in dairy calves play a vital role in their growth and development. This review discusses the development of dairy calf intestinal microbiomes with an emphasis on the impact that husbandry and rearing management have on microbiome development, health and growth of pre-weaned dairy calves. The diversity and composition of the microbes that colonize the lower GIT (small and large intestine) can have a significant impact on the growth and development of the calf, through influence on nutrient metabolism, immune modulation, resistance or susceptibility to infection, production outputs and behaviour modification in adult life.

View Article and Find Full Text PDF

Heat-stress-induced oxidative and inflammatory responses were important factors contributing to chicken intestinal damage. The purpose of this study was based on the antioxidant and anti-inflammatory activities of Physalis Calyx seu Fructus (Jin Deng Long, JDL) to investigate its efficacy and mechanism in relieving chicken heat stress damage. Primary chicken embryo duodenum cells and 90 30-day-old specific-pathogen-free chicken were randomly divided into control and JDL groups to establish heat stress models and .

View Article and Find Full Text PDF

Bacteria in the complex and nontuberculous mycobacteria may affect a variety of animal species under human care and pose public health risks as zoonotic pathogens. A case of sudden onset of lethargy and increased respiratory effort in a 5-y-old, intact female reindeer () under managed care had progressed to severe dyspnea despite aggressive treatment. The animal was euthanized due to poor prognosis.

View Article and Find Full Text PDF

Aims/hypothesis: Within the small intestine, neutrophils play an integral role in preventing bacterial infection. Upon interaction with bacteria or bacteria-derived antigens, neutrophils initiate a multi-staged response of which the terminal stage is NETosis, formation of protease-decorated nuclear DNA into extracellular traps. NETosis has a great propensity to elicit ocular damage and has been associated with diabetic retinopathy and diabetic macular oedema (DME) progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!