The physiological function of L-carnosine (beta-alanyl-L-histidine) synthesized in mammalian muscles has been unclear. Previously, we observed that intravenous (i.v.) injection of L-carnosine suppressed renal sympathetic nerve activity (RSNA) in urethane-anesthetized rats, and L-carnosine administered via the diet inhibited the elevation of blood pressure (BP) in deoxycorticosterone acetate salt hypertensive rats. To identify the mechanism, we examined effects of i.v. or intralateral cerebral ventricular (l.c.v.) injection of various doses of L-carnosine on RSNA and BP in urethane-anesthetized rats. Lower doses (1 microg i.v.; 0.01 microg l.c.v.) of L-carnosine significantly suppressed RSNA and BP, whereas higher doses (100 microg i.v.; 10 microg l.c.v.) elevated RSNA and BP. Furthermore, we examined effects of antagonists of histaminergic (H1 and H3) receptors on L-carnosine-induced effects. When peripherally and centrally given, thioperamide, an H3 receptor antagonist, blocked RSNA and BP decreases induced by the lower doses of peripheral L-carnosine, whereas diphenhydramine, an H1 receptor antagonist, inhibited increases induced by the higher doses of peripheral L-carnosine. Moreover, bilateral lesions of the hypothalamic suprachiasmatic nucleus eliminated both effects on RSNA and BP induced by the lower (1 microg) and higher (100 microg) doses of peripheral L-carnosine. These findings suggest that low-dose L-carnosine suppresses and high-dose L-carnosine stimulates RSNA and BP, that the suprachiasmatic nucleus and histaminergic nerve are involved in the activities, and that L-carnosine acts in the brain and possibly other organs.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00275.2004DOI Listing

Publication Analysis

Top Keywords

l-carnosine
12
urethane-anesthetized rats
12
doses peripheral
12
peripheral l-carnosine
12
renal sympathetic
8
sympathetic nerve
8
blood pressure
8
l-carnosine suppressed
8
rsna urethane-anesthetized
8
examined effects
8

Similar Publications

Nanofibrous dressing materials with an antitumor function can potentially inhibit recurrence of melanoma following the surgical excision of skin tumors. In this study, hydrolyzed polyacrylonitrile (hPAN) nanofibers biofunctionalized with L-carnosine (CAR) and loaded with bio (CAR)-synthesized zinc oxide (ZnO) nanoparticles, ZnO/CAR-hPAN (hereafter called ZCPAN), were employed to develop an antimelanoma wound dressing. Inspired by the formulation of the commercial wound healing Zn-CAR complex, i.

View Article and Find Full Text PDF

Impact of Dietary-Forage-to-Concentrate Ratio on Podolian Young Bulls' Performance and Nutritional Properties of Meat.

Animals (Basel)

January 2025

Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25-71121 Foggia, Italy.

Animal feeding has a great impact on the management of beef farms, also affecting the nutritional properties of the meat. Therefore, in this study, the following two forage-to-concentrate ratios were tested on twenty farmed Podolian young bulls: high forage-to-concentrate (HF:C) ratio of 65:35 vs. low forage-to-concentrate (LF:C) ratio of 45:55.

View Article and Find Full Text PDF

This study evaluated metabolites and lipid composition in the calf muscles of Type 2 diabetes mellitus (T2DM) patients and age-matched healthy controls using multi-dimensional MR spectroscopic imaging. We also explored the association between muscle metabolites, lipids, and intra-abdominal fat in T2DM. Participants included 12 T2DM patients (60.

View Article and Find Full Text PDF

New types of metal-organic framework (MOF) materials have great potential in solving the current global dilemma on energy, environment, and medical care. Herein, based on two kinds of biomolecule-MOFs (Bio-MOFs) with favorable biocompatibility and degradation-reconstruction characteristics, we have established a self-powered muti-functional device to achieve an efficient and broad-spectrum environmental energy collection and biomedical applications. Combining Zn(II) and carnosine-based Zn-Car_MOF possessing a high piezoelectric response (d = 11.

View Article and Find Full Text PDF

Host-directed therapies (HDTs) resolve excessive inflammation during tuberculosis (TB) disease, which leads to irreversible lung tissue damage. The peptide-based nanostructures possess intrinsic anti-inflammatory and antioxidant properties among HDTs. Native carnosine, a natural dipeptide with superior self-organization and functionalities, was chosen for nanoformulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!