A 15-member library of phosphaadamantane ligands has been prepared via P-arylation of 1,3,5,7-tetramethyl-2,4,8-trioxa-6-phosphaadamantane. Screening of this tertiary phosphine collection has allowed for the rapid determination of the most suitable ligand, specifically 1,3,5,7-tetramethyl-6-(2,4-dimethoxyphenyl)-2,4,8-trioxa-6-phosphaadamantane, for facilitating Suzuki-type couplings of alkyl halides or tosylates containing beta-hydrogens with either boronic acids or alkylboranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo048875+ | DOI Listing |
Polymers (Basel)
December 2024
State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China.
The presented work discusses the highly efficient esterification of poly (γ-glutamic acid) (γ-PGA) with alkyl halides at room temperature. The esterification reaction was completed within 3 h, and the prepared γ-PGA esters were obtained with excellent yields (98.6%) when 1,1,3,3-tetramethylguanidine (TMG) was used as a promoter.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.
Aryl triflates make up a class of aryl electrophiles that are available in a single step from the corresponding phenol. Despite the known reactivity of nickel complexes for aryl C-O bond activation of phenol derivatives, nickel-catalyzed cross-electrophile coupling using aryl triflates has proven challenging. Herein, we report a method to form C(sp)-C(sp) bonds by coupling aryl triflates with alkyl bromides and chlorides using phenanthroline (phen) or pyridine-2,6-bis(-cyanocarboxamidine) (PyBCam)-ligated nickel catalysts.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.
Herein, we report a Ni-catalyzed cross-electrophile coupling of aryl/vinyl halides with benzothiazolium salts derived from alcohols. Our findings demonstrate that primary alkyl benzothiazolium salts serve as effective C(sp)-O substrates, facilitating coupling with aryl and vinyl halides. This method not only enables the formal functionalization of primary alcohols but also provides experimental support for previously established sequential alcohol halogenation and Ni-catalyzed reductive coupling platforms.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Key Laboratory of Chemistry and Chemical Engineering on Heavy-Carbon Resources, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, People's Republic of China.
E2 elimination and SN2 substitution reactions are of central importance in preparative organic synthesis due to their stereospecificity. Herein, atomistic dynamics of a prototype reaction of ethyl chloride with hydroxide ion are uncovered that show strikingly distinct features from the case with fluoride anion. Chemical dynamics simulations reproduce the experimental reaction rate and reveal that the E2 proceeding through a direct elimination mechanism dominates over SN2 for the hydroxide ion reaction.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, MP, India.
We report herein a palladium-catalyzed distal alkylation of silyldienol and silyltrienol ethers of enones through coupling with activated halides to achieve new - and -alkylated motifs. Additionally, by employing propargyl bromides, synthetically useful linear allenes along with functionalized enones have been synthesized. Low-catalyst loading, and late-stage transformations of pharmaceutically relevant molecules further showcase the importance of the present protocol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!