Complex eukaryotic genomes are now being sequenced at an accelerated pace primarily using whole-genome shotgun (WGS) sequence assembly approaches. WGS assembly was initially criticized because of its perceived inability to resolve repeat structures within genomes. Here, we quantify the effect of WGS sequence assembly on large, highly similar repeats by comparison of the segmental duplication content of two different human genome assemblies. Our analysis shows that large (> 15 kilobases) and highly identical (> 97%) duplications are not adequately resolved by WGS assembly. This leads to significant reduction in genome length and the loss of genes embedded within duplications. Comparable analyses of mouse genome assemblies confirm that strict WGS sequence assembly will oversimplify our understanding of mammalian genome structure and evolution; a hybrid strategy using a targeted clone-by-clone approach to resolve duplications is proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature03062 | DOI Listing |
Resolving the molecular basis of a Mendelian condition remains challenging owing to the diverse mechanisms by which genetic variants cause disease. To address this, we developed a synchronized long-read genome, methylome, epigenome and transcriptome sequencing approach, which enables accurate single-nucleotide, insertion-deletion and structural variant calling and diploid de novo genome assembly. This permits the simultaneous elucidation of haplotype-resolved CpG methylation, chromatin accessibility and full-length transcript information in a single long-read sequencing run.
View Article and Find Full Text PDFSci Data
January 2025
Shaanxi Key Laboratory of Plant Nematology, Bio-Agriculture Institute of Shaanxi, Xi'an, China.
Ditylenchus destructor, commonly known as the potato rot nematode, is a significant plant-parasitic pathogen affecting over 120 plant species globally. Effective control measures for D. destructor are limited, underscoring the need a high-quality reference genome to understand its pathogenic mechanisms.
View Article and Find Full Text PDFAnal Chem
January 2025
Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, Jiangsu, China.
The incidence of cervical cancer continues to rise in underdeveloped regions due to low human papillomavirus (HPV) vaccination rates and inadequate screening systems. To achieve convenient, rapid, and accurate detection of HPV, we developed a three-wire lateral flow strip assay system based on dual-OR logic gates for rapid and simultaneous detection of HPV subtypes 16 and 18 in a single test. The system combines three-branch-catalytic hairpin assembly (TCHA)-mediated signal amplification with simple OR logic gate-based signal output to improve detection rates while enabling HPV 16/18 subtype identification.
View Article and Find Full Text PDFInt J Antimicrob Agents
January 2025
Department of Botany, Institute of Science, Banaras Hindu, University, Varanasi, Uttar Pradesh, 221005, India. Electronic address:
Global demand for food has driven expansion and intensification of livestock production, particularly in developing nations where antibiotic use is often routine. Waste from poultry production, including manure, is commonly utilized as fertilizers in agroecosystems, risking environmental contamination with potentially zoonotic bacteria and antimicrobial resistance genes (ARGs). Here, 33 bacterial isolates were recovered from broiler (n=17) and layer (n=16) chicken manure by aerobic culture using Luria Bertani agar.
View Article and Find Full Text PDFGenomics
January 2025
Shennong Laboratory/ Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China. Electronic address:
High-oleic peanuts are increasingly valued in agricultural production and consumer markets. Nevertheless, limited genomic information hinders the integration of genetic analyses and modern breeding strategies. This study details a chromosome-level genome assembly of Kaixuan 016, a high-oleic peanut variety developed through gamma-radiation-assisted breeding, exhibiting enhanced agronomic traits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!