Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Availability of the M. tuberculosis genome sequence and the development of sophisticated systems for genetic manipulation of bacilli offer the potential for new and effective tools to prevent and control tuberculosis. Efficient methods to inactivate mycobacterial genes have been developed. These methods have become the cornerstone for the application and development of mycobacterial functional genomics. Specific mutants are generated to establish the role of targetted genes associated with mycobacterial physiology and pathogenesis. Gene inactivation, supported directly or indirectly by the deciphering of the mycobacterial genome, has permitted the generation of large numbers of M. tuberculosis mutants. Analysis of these mutants has (in some cases) established relationships between gene products and their role in mycobacterial physiology and pathogenesis.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!