Mechanisms of membrane estrogen receptor-alpha-mediated rapid stimulation of Ca2+ levels and prolactin release in a pituitary cell line.

Am J Physiol Endocrinol Metab

Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0645, USA.

Published: February 2005

The role of membrane estrogen receptor-alpha (mERalpha) in rapid nongenomic responses to 17beta-estradiol (E(2)) was tested in sublines of GH3/B6 rat prolactinoma cells selected for high (GH3/B6/F10) and low (GH3/B6/D9) mERalpha expression. E(2) elicited rapid, concentration-dependent intracellular Ca(2+) concentration ([Ca(2+)](i)) increases in the F10 subline. Lack of inhibition by thapsigargin depletion of intracellular Ca(2+) pools, together with abrogation of the response in Ca(2+)-free medium, suggested an extracellular source of Ca(2+) for this response. The participation of voltage-dependent channels in the E(2)-induced [Ca(2+)](i) increase was confirmed by the specific L-type Ca(2+) channel inhibitor nifedipine. For comparison, the D9 mERalpha-depleted subline was insensitive to steroid action via this signaling mechanism. [Ca(2+)](i) elevation was correlated with prolactin (PRL) release in the F10 cell line in as little as 3 min. E(2) caused a much higher PRL release than KCl treatment (which caused maximal Ca(2+) elevation), suggesting that secretion was also controlled by additional mechanisms. Participation of mERalpha in these effects was confirmed by the ability of E(2)-peroxidase (a cell-impermeable analog of E(2)) to cause these responses, blockage of the responses with the ER antagonist ICI 182 780, and the inability of the E(2) stereoisomer 17alpha-E(2) to elicit a response. Thus rapid exocytosis of PRL is regulated in these cells by mERalpha signaling to specific Ca(2+) channels utilizing extracellular Ca(2+) sources and additional signaling mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.00349.2004DOI Listing

Publication Analysis

Top Keywords

membrane estrogen
8
ca2+
8
intracellular ca2+
8
prl release
8
mechanisms membrane
4
estrogen receptor-alpha-mediated
4
rapid
4
receptor-alpha-mediated rapid
4
rapid stimulation
4
stimulation ca2+
4

Similar Publications

Maternal exposure to bisphenol A induces congenital heart disease through mitochondrial dysfunction.

FASEB J

January 2025

Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.

Congenital heart disease (CHD) represents a major birth defect associated with substantial morbidity and mortality. Although environmental factors are acknowledged as potential contributors to CHD, the underlying mechanisms remain poorly understood. Bisphenol A (BPA), a common endocrine disruptor, has attracted significant attention due to its widespread use and associated health risks.

View Article and Find Full Text PDF

Zearalenone (ZEA) is a mycotoxin commonly found in moldy cereals and has a range of toxic effects that have seriously affected animal husbandry. Rutin, a natural flavonoid with antioxidant activities, has been studied for its potential involvement in mitigating ZEA-induced apoptosis in porcine endometrial stromal cells (ESCs) and its potential molecular mechanism, particularly concerning the expression of Nrf2. This study investigates the molecular pathways by which rutin alleviates ZEA-induced ESC apoptosis, focusing on the role of Nrf2.

View Article and Find Full Text PDF

Introduction: This article describes the invention of graphene oxide (GO) or reduced graphene oxide (rGO) functionalised with 2-methoxy estradiol. The presence of polar hydroxyl groups enables the binding of 2-ME to GO/rGO through hydrogen bonds with epoxy and hydroxyl groups located on the surface and carbonyl and carboxyl groups located at the edges of graphene flake sheets.

Methods: The patented method of producing the subject of the invention and the research results regarding its anticancer effectiveness via cytotoxicity in an in vivo model (against A375 melanoma and 143B osteosarcoma cells) are described.

View Article and Find Full Text PDF

Background: Lung cancer is the leading cause of cancer-related deaths worldwide. Therefore, the search for new biomarkers continues in order to diagnose lung cancer at an early stage. In this study, we investigated blood levels of G-protein associated membrane estrogen receptor (GPER)-1 and Raftlin as markers of early-stage in lung cancer.

View Article and Find Full Text PDF

Estrogen hormones are primarily associated with their role as female sex hormones responsible for primary and secondary sexual development. Estrogen receptors are known to undergo age-dependent decreases due to age-related changes in hormone production. In the mitochondria, estrogen functions by reducing the production of reactive oxygen species in the electron transport chain, inhibiting apoptosis, and regulating mitochondrial DNA content.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!