A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A new pharmacological effect of salicylates: inhibition of NFAT-dependent transcription. | LitMetric

A new pharmacological effect of salicylates: inhibition of NFAT-dependent transcription.

J Immunol

Instituto de Biología y Genética Molecular, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain.

Published: November 2004

The anti-inflammatory effects of salicylates, originally attributed to inhibition of cyclooxygenase activity, are currently known to involve additional mechanisms. In this study we investigated the possible modulation by salicylates of NFAT-mediated transcription in lymphocytic and monocytic cell lines. RNase protection assays showed that 2-acetoxy-4-trifluoromethylbenzoic acid (triflusal) inhibited, in a dose-dependent manner, mRNA expression of several cytokine genes, most of which are NFAT-regulated and cyclosporin A (CsA)-sensitive. In Jurkat cells, the expression of IL-3, GM-CSF, TNF-alpha, TGF-beta1, IL-2, lymphotactin, MIP-1alpha, and MIP-1beta was inhibited to different extents. In THP-1 cells, inhibition of the expression of M-CSF, G-CSF, stem cell factor, IFN-gamma, TNF-alpha, TGF-beta1, lymphotoxin-beta1, MIP-1alpha, MIP-1beta, and IL-8 was observed. Sodium salicylate and aspirin only showed significant effects at 5 mM. The transcriptional activity of two genes that contain NFAT sites, a GM-CSF full promoter and a T cell-specific enhancer from the IL-3 locus, was also inhibited by salicylates. Transactivation experiments performed with several NFAT-dependent and AP-1-dependent reporter genes showed that triflusal strongly inhibited NFAT-dependent transcription at concentrations as low as 0.25 mM. Sodium salicylate and aspirin were less potent. The triflusal inhibitory effect was reversible and synergized with suboptimal doses of CsA. Experiments to address the mechanism of action of salicylates in the NFAT activation cascade disclosed a mechanism different from that of CsA, because salicylates inhibited DNA-binding and NFAT-mediated transactivation without affecting phosphorylation or subcellular localization of NFAT. In summary, these data describe a new pharmacological effect of salicylates as inhibitors of NFAT-dependent transcription.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.173.9.5721DOI Listing

Publication Analysis

Top Keywords

nfat-dependent transcription
12
pharmacological salicylates
8
triflusal inhibited
8
tnf-alpha tgf-beta1
8
mip-1alpha mip-1beta
8
sodium salicylate
8
salicylate aspirin
8
salicylates
6
inhibited
5
salicylates inhibition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!