AI Article Synopsis

  • Regulated migration and spatial localization of dendritic cells (DCs) are essential for immune responses and tolerance, with a key role played by the Wiskott-Aldrich syndrome protein (WASp).
  • WASp-null immature dendritic cells showed defects in attachment and movement on fibronectin-coated surfaces, leading to impaired translocation and a disrupted response to the chemokine CCL21.
  • In vivo studies revealed compromised migration of WASp-null Langerhans cells, with impaired homing to lymph nodes and incomplete reorganization in the spleen during immune challenges, indicating the vital function of a well-regulated actin cytoskeleton in immune trafficking and the potential immunopathology related to Wiskott-A

Article Abstract

Regulated migration and spatial localization of dendritic cells (DCs) are critical events during the initiation of physiologic immune responses and maintenance of tolerance. Here we have used cells deficient in the Wiskott-Aldrich syndrome protein (WASp) to demonstrate the importance of dynamic remodeling of the actin cytoskeleton for these trafficking processes to occur in vitro and in vivo. On fibronectin-coated surfaces, WASp-null immature murine DCs exhibited defects both of attachment and detachment, resulting in impaired net translocation compared with normal cells. The chemokinetic response to CCL21, which is critical for normal lymphatic trafficking, was also abrogated in the absence of WASp. In vivo in both fluorescein isothiocyanate (FITC) and oxazolone contact hypersensitivity models, WASp-null Langerhans cell (LC) migration was compromised, as judged by exit from the skin as well as by homing to the draining lymph node (LN). Furthermore, following systemic challenge with lipopolysaccharide (LPS) or toxoplasma-derived antigen, WASp-null DCs showed incomplete redistribution to T-cell areas in the spleen. Instead, they were retained ectopically in the marginal zone. DC trafficking in vivo is therefore dependent on a normally regulated actin cytoskeleton, which performs an essential function during maintenance of physiologic immunity and when disturbed may contribute significantly to the immunopathology of Wiskott-Aldrich Syndrome.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2004-06-2332DOI Listing

Publication Analysis

Top Keywords

wiskott-aldrich syndrome
12
syndrome protein
8
actin cytoskeleton
8
impaired dendritic-cell
4
dendritic-cell homing
4
vivo
4
homing vivo
4
vivo absence
4
absence wiskott-aldrich
4
protein regulated
4

Similar Publications

Mycolactone is a complex macrolide toxin produced by , the causative agent of Buruli ulcer. The aim of this paper is to review the chemistry, biosynthetic, and synthetic pathways of mycolactone A/B to help develop an understanding of the mode of action of these polyketides as well as their therapeutic potential. The synthetic work has largely been driven by the desire to afford researchers enough (≥100 mg) of the pure toxins for systematic biological studies toward understanding their very high biological activities.

View Article and Find Full Text PDF

Objectives: To explore the mechanism by which Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1) regulates lipopolysaccharide (LPS)-induced mitochondrial metabolic abnormalities and inflammatory responses in macrophages.

Methods: Macrophage cell lines with overexpressed WAVE1 (mouse BMDM and human THP1 cells) were prepared. The macrophages were treated with LPS (500 ng/mL) to simulate sepsis-induced inflammatory responses.

View Article and Find Full Text PDF

Wiskott-Aldrich syndrome (WAS) is a severe X-linked disorder caused by loss-of-function mutations in the WAS gene, responsible for encoding WASP, a key regulator of actin cytoskeleton in all hematopoietic cells except red blood cells. The mechanism underlying microthrombocytopenia, a distinctive feature of WAS and a major contributor to mortality, remains not fully elucidated. In this study, using different gene editing strategies, we corrected mutations in patient-derived WAS-induced pluripotent stem cell lines, generating isogeneic WAS iPSC lines.

View Article and Find Full Text PDF

Purpose: Wiskott-Aldrich syndrome (WAS) is an X-linked genetic disorder characterized by distinctive features including microthrombocytopenia, eczema and recurrent infections. In the present study we report clinical, immunological and molecular spectrum of 41 WAS patients diagnosed over last five years.

Methods: Clinical and family history was collected from case records.

View Article and Find Full Text PDF
Article Synopsis
  • Cortical condensates are transient structures that form in the actin cortex of oocytes and are rich in actin and N-WASP, forming through a phase separation process influenced by chemical kinetics.
  • The study reveals that N-WASP can undergo surface condensation on lipid bilayers, which is a key factor in the formation of these condensates.
  • The dynamics of condensate formation are regulated by a balance between their creation at the surface and the polymerization of actin, shedding light on the control of complex intracellular structures.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!