Regulated migration and spatial localization of dendritic cells (DCs) are critical events during the initiation of physiologic immune responses and maintenance of tolerance. Here we have used cells deficient in the Wiskott-Aldrich syndrome protein (WASp) to demonstrate the importance of dynamic remodeling of the actin cytoskeleton for these trafficking processes to occur in vitro and in vivo. On fibronectin-coated surfaces, WASp-null immature murine DCs exhibited defects both of attachment and detachment, resulting in impaired net translocation compared with normal cells. The chemokinetic response to CCL21, which is critical for normal lymphatic trafficking, was also abrogated in the absence of WASp. In vivo in both fluorescein isothiocyanate (FITC) and oxazolone contact hypersensitivity models, WASp-null Langerhans cell (LC) migration was compromised, as judged by exit from the skin as well as by homing to the draining lymph node (LN). Furthermore, following systemic challenge with lipopolysaccharide (LPS) or toxoplasma-derived antigen, WASp-null DCs showed incomplete redistribution to T-cell areas in the spleen. Instead, they were retained ectopically in the marginal zone. DC trafficking in vivo is therefore dependent on a normally regulated actin cytoskeleton, which performs an essential function during maintenance of physiologic immunity and when disturbed may contribute significantly to the immunopathology of Wiskott-Aldrich Syndrome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood-2004-06-2332 | DOI Listing |
Toxins (Basel)
December 2024
Department of Chemistry, University of Ghana, Legon-Accra P.O. Box LG56, Ghana.
Mycolactone is a complex macrolide toxin produced by , the causative agent of Buruli ulcer. The aim of this paper is to review the chemistry, biosynthetic, and synthetic pathways of mycolactone A/B to help develop an understanding of the mode of action of these polyketides as well as their therapeutic potential. The synthetic work has largely been driven by the desire to afford researchers enough (≥100 mg) of the pure toxins for systematic biological studies toward understanding their very high biological activities.
View Article and Find Full Text PDFZhongguo Dang Dai Er Ke Za Zhi
December 2024
Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China.
Objectives: To explore the mechanism by which Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1) regulates lipopolysaccharide (LPS)-induced mitochondrial metabolic abnormalities and inflammatory responses in macrophages.
Methods: Macrophage cell lines with overexpressed WAVE1 (mouse BMDM and human THP1 cells) were prepared. The macrophages were treated with LPS (500 ng/mL) to simulate sepsis-induced inflammatory responses.
Thromb Haemost
December 2024
Pharmacology, Chulalongkorn University, Bangkok, Thailand.
Wiskott-Aldrich syndrome (WAS) is a severe X-linked disorder caused by loss-of-function mutations in the WAS gene, responsible for encoding WASP, a key regulator of actin cytoskeleton in all hematopoietic cells except red blood cells. The mechanism underlying microthrombocytopenia, a distinctive feature of WAS and a major contributor to mortality, remains not fully elucidated. In this study, using different gene editing strategies, we corrected mutations in patient-derived WAS-induced pluripotent stem cell lines, generating isogeneic WAS iPSC lines.
View Article and Find Full Text PDFPurpose: Wiskott-Aldrich syndrome (WAS) is an X-linked genetic disorder characterized by distinctive features including microthrombocytopenia, eczema and recurrent infections. In the present study we report clinical, immunological and molecular spectrum of 41 WAS patients diagnosed over last five years.
Methods: Clinical and family history was collected from case records.
Proc Natl Acad Sci U S A
December 2024
Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!