Aim: Investigations on reducing the toxicity of triptolide through poly(D, L-lactic acid) nanoparticles as a drug carrier by oral administration to Wistar rats.

Methods: Triptolide-loaded poly (D, L-lactic acid) nanoparticles (TP-PLA-NPs) were prepared by modified spontaneous emulsification solvent diffusion (modified-SESD). The shape of nanoparticles was observed by transmission electron microscope (TEM). The size distribution and mean diameter were measured by laser light scattering technique. The entrapment efficiency and contents of drug loading were determined by RP-HPLC. The physical state of drug loaded in nanopartiles were primarily investigated by X-ray powder diffractometry. TP-PLA-NPs release behavior in vitro was carried out. After oral administration of the nanoparticles to Wistar rats in 15d, the toxicity for liver and kidney were studied by determining aspartate transaminase (AST), alanine transaminase (ALT) and blood urea nitrogen in serum and concentration of protein in urine.

Results: The preparation process adapted to the formulation was as follows: the volume ratio of the aqueous and organic phases was 40/15; the surfactant concentration was 1%; the drug concentration was 0.3%; triptolide-PLA was 1:15 (w/w). The mean diameter was 149.7 nm and the polydispersity index was 0. 088 for the nanoparticles prepared by above conditions. The entrapment efficiency and content of drug loading were 74.27% and 1.36%, respectively. The release behavior of drug in vitro showed an initial burst effect, subsequently a slower rate stage. The results indicated that the liver toxicity (P < 0.01) and kidney toxicity (P < 0.05) caused by triptolide could be decreased significantly by nanoparticles carrier.

Conclusion: PLA-NPs might be used as a new oral carrier for triptolide.

Download full-text PDF

Source

Publication Analysis

Top Keywords

triptolide-loaded poly
8
l-lactic acid
8
acid nanoparticles
8
oral administration
8
entrapment efficiency
8
drug loading
8
release behavior
8
nanoparticles
6
drug
6
[preparation toxicity
4

Similar Publications

Rheumatoid arthritis is considered a chronic systemic autoimmune disorder that may cause joint destruction. Triptolide, an active component isolated from Tripterygium wilfordii Hook.f.

View Article and Find Full Text PDF

Triptolide (TP) exhibits immunosuppressive, cartilage-protective and anti-inflammatory effects in rheumatoid arthritis. However, the toxicity of TP limits its widespread use. To decrease the toxic effects, we developed a novel nano-drug carrier system containing TP using poly-γ-glutamic acid-grafted di-tert-butyl L-aspartate hydrochloride (PAT).

View Article and Find Full Text PDF

Triptolide (TP), a diterpenoid triepoxide purified from the Chinese herb Tripterygium wilfordii Hook F is characterized by strong anti-tumor effects on various cancer cells. Except its anti-tumor effects, TP also shows multiple pharmacological side activities, such as anti-inflammatory, immune-suppressive and male anti-fertility. In order to reduce these side effects, especially the immuno-suppressive activity when used to cure cancer, a novel polymeric micelle system containing TP (TP-PM) was constructed.

View Article and Find Full Text PDF

The aim of this study is to investigate the effect of poly(D, L-lactic acid) (PLA) nanoparticles as triptolide carrier on abating renal toxicity for Sprague Dawley rats after oral administration. Triptolide has severe toxicities on digestive, urogenital and blood circulatory system. High-resolution 600-MHz 1H-nuclear magnetic resonance (1H-NMR)-based metabolic analysis was performed on urine samples obtained from five groups of Sprague Dawley rats administrated with free triptolide and triptolide-loaded PLA nanoparticles at day 5, 10 and 15.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!