Murine T-cell clones against Entamoeba histolytica: in vivo and in vitro characterization.

Immunology

Institute of Parasitology of McGill University, Macdonald College, 21,111 Lakeshore Road, Ste-Anne de Bellevue, Québec, Canada.

Published: January 1989

Eleven T-cell clones were raised from the spleens of BALB/c mice hyperimmunized against a crude soluble extract of Entamoeba histolytica trophozoites. Seven clones were of the Lyt-1+, and four of the Lyt-23+ phenotype. All clones proliferated in the presence of E. histolytica antigens but not to a purified protein derivative; five clones proliferated to a crude extract of the E. histolytica-like Laredo amoebae. Ten clones secreted T-cell growth factors in response to E. histolytica antigens. Two clones (Lyt-23+) mediated direct lymphocytotoxicity (73% and 86%) against amoebic trophozoites that was inhibited with rabbit anti-mouse TNF-alpha. Supernatants of five of the clones (all Lyt-1+) activated mouse peritoneal macrophages (Mphi) to kill E. histolytica trophozoites in vitro, seemingly independent of secreted reactive oxygen intermediates (O2- and H2O2) in the case of three clones supernatants. All of the clones that were activating Mphi to kill amoeba in vitro also mediated a local DTH reaction in mouse footpad. Our results demonstrate direct lymphocyte cytotoxicity via a cytolytic molecule antigenically related to TNF-alpha and lymphokines activating Mphi for amoebic killing by oxidative and non-oxidative mechanisms, the latter process mediated by a macrophage-activating factor (MAF) distinct from interferon-gamma (IFN-gamma).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1385123PMC

Publication Analysis

Top Keywords

clones
10
t-cell clones
8
entamoeba histolytica
8
histolytica trophozoites
8
clones lyt-1+
8
clones proliferated
8
histolytica antigens
8
supernatants clones
8
mphi kill
8
activating mphi
8

Similar Publications

Characterisation of a Betasatellite Associated With Tomato Yellow Leaf Curl Guangdong Virus and Discovery of an Unusual Modulation of Virus Infection Associated With C4 Protein.

Mol Plant Pathol

January 2025

Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.

Tomato yellow leaf curl Guangdong virus (TYLCGdV), a monopartite begomovirus first identified in 2004, remains poorly characterised. In this study, we demonstrate that TYLCGdV associates with a betasatellite, TYLCGdB, and the βC1 protein encoded by TYLCGdB is essential for symptom development. We also explore the role of TYLCGdV C4 protein by generating a C4-deficient infectious clone (TYLCGdV), revealing a dynamic role for TYLCGdV C4.

View Article and Find Full Text PDF

The lipoxygenase (LOX) gene family is widely distributed in plants, and its activity is closely associated with seed viability and stress tolerance. In this study, we cloned the rice(Oryza sativa)lipoxygenase gene OsLOX1, a key participant in the 13-lipoxygenase metabolic pathway. Our primary focus was to investigate its role in mediating responses to drought stress and seed germination in rice.

View Article and Find Full Text PDF

In tropical countries, malaria transmission is the major health issue. To eradicate malaria, health communities depend on the control measure that affects economy and environment of the countries. To overcome these burdens, there is a great need to develop vaccine against malaria, but there is no vaccine to control malaria effectively.

View Article and Find Full Text PDF

Kelp deforestation by sea urchin grazing is a widespread phenomenon globally, with vast consequences for coastal ecosystems. The ability of sea urchins to survive on a kelp diet of poor nutritional quality is not well understood and bacterial communities in the sea urchin intestine may play an important role in digestion. A no-choice feeding experiment was conducted with the sea urchin Strongylocentrotus droebachiensis, offering three different seaweeds as diet, including the kelp Saccharina latissima.

View Article and Find Full Text PDF

In Silico Subtractive Proteome Analysis to Design Multi-Epitope-Based Subunit Vaccine against .

J Microbiol Biotechnol

November 2024

Fatemah AlMalki, Biology Department, College of Science and Humanities- Al Quwaiiyah, Shaqra University, Al Quwaiiyah 19257, Saudi Arabia.

is a gram-negative, facultatively anaerobic bacterium typically found in the oropharynx and respiratory tract of humans. It is responsible for various infections, including head-and-neck infections, pericarditis, and abscesses of the deltoid, perirenal tissue, brain, and liver. Increasing antibiotic resistance requires urgent identification of novel drug targets to fight this bacterium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!