Rett syndrome (RTT) is a severe neurodevelopmental disorder caused, in most classic cases, by mutations in the X-linked methyl-CpG-binding protein 2 gene (MECP2). A large degree of phenotypic variation has been observed in patients with RTT, both those with and without MECP2 mutations. We describe a family consisting of a proband with a phenotype that showed considerable overlap with that of RTT, her identical twin sister with autistic disorder and mild-to-moderate intellectual disability, and a brother with profound intellectual disability and seizures. No pathogenic MECP2 mutations were found in this family, and the Xq28 region that contains the MECP2 gene was not shared by the affected siblings. Three other candidate regions were identified by microsatellite mapping, including 10.3 Mb at Xp22.31-pter between Xpter and DXS1135, 19.7 Mb at Xp22.12-p22.11 between DXS1135 and DXS1214, and 16.4 Mb at Xq21.33 between DXS1196 and DXS1191. The ARX and CDKL5 genes, both of which are located within the Xp22 region, were sequenced in the affected family members, and a deletion of nucleotide 183 of the coding sequence (c.183delT) was identified in CDKL5 in the affected family members. In a screen of 44 RTT cases, a single splice-site mutation, IVS13-1G-->A, was identified in a girl with a severe phenotype overlapping RTT. In the mouse brain, Cdkl5 expression overlaps--but is not identical to--that of Mecp2, and its expression is unaffected by the loss of Mecp2. These findings confirm CDKL5 as another locus associated with epilepsy and X-linked mental retardation. These results also suggest that mutations in CDKL5 can lead to a clinical phenotype that overlaps RTT. However, it remains to be determined whether CDKL5 mutations are more prevalent in specific clinical subgroups of RTT or in other clinical presentations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1182143PMC
http://dx.doi.org/10.1086/426462DOI Listing

Publication Analysis

Top Keywords

mutations cdkl5
8
severe neurodevelopmental
8
neurodevelopmental disorder
8
mental retardation
8
mecp2 mutations
8
intellectual disability
8
family members
8
rtt
7
mutations
6
mecp2
6

Similar Publications

Ganaxolone: A Review in Epileptic Seizures Associated with Cyclin-Dependent Kinase-Like 5 Deficiency Disorder.

Paediatr Drugs

January 2025

Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.

Oral ganaxolone (ZTALMY), a synthetic analogue of the endogenous neuroactive steroid allopregnanolone, acts as a positive allosteric modulator of synaptic and extra-synaptic γ-aminobutyric acid (GABA) type A receptor function in the CNS. In the EU and the UK, it is approved for the adjunctive treatment of epileptic seizures associated with cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) in patients aged 2-17 years. In a multinational phase III study (Marigold), 17 weeks' therapy with adjunctive ganaxolone, administered orally three times daily with food, significantly reduced 28-day major motor seizure frequency from baseline versus placebo in patients aged 2-19 years with CDD-associated refractory epilepsy.

View Article and Find Full Text PDF

Engineered tRNAs efficiently suppress CDKL5 premature termination codons.

Sci Rep

December 2024

Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan), 20054, Italy.

Article Synopsis
  • The CDKL5 deficiency disorder (CDD) is a severe neurodevelopmental condition with symptoms including early epilepsy, intellectual disabilities, and motor/visual dysfunction, caused by mutations in the CDKL5 gene.
  • Currently, there is no cure for CDD; treatments focus on managing seizures, though some genetic therapies show promise in addressing the disorder's root causes.
  • Recent studies using Anticodon-edited tRNAs (ACE-tRNAs) have shown potential in restoring full-length CDKL5 protein synthesis, opening up possibilities for effective new treatments for patients with nonsense mutations.
View Article and Find Full Text PDF

Background: Mutations in the X-linked CDKL5 gene underlie a severe epileptic encephalopathy, CDKL5 deficiency disorder (CDD), characterized by gross motor impairment, autistic features and intellectual disability. Absence of Cdkl5 negatively impacts neuronal proliferation, survival, and maturation in in vitro and in vivo models, resulting in behavioral deficits in the Cdkl5 KO mouse. While there is no targeted therapy for CDD, several studies showed that treatments enabling an increase in brain BDNF levels give rise to structural and behavioral improvements in Cdkl5 KO mice.

View Article and Find Full Text PDF

CDKL5 deficiency disorder (CDD) is a rare neurodevelopmental syndrome caused by mutations in the X-linked CDKL5 gene. Hundreds of pathogenic variants have been described, associated with a significant phenotypic heterogeneity observed among patients. To date, different knockout mouse models have been generated.

View Article and Find Full Text PDF

Generation of a human induced pluripotent stem cell (iPSC) line from a patient with a CDKL5 gene mutation.

Stem Cell Res

December 2024

Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; National Center for Clinical Medicine of Neurological Diseases, Beijing 10070, China. Electronic address:

CDKL5(Cyclin-dependent kinase-like 5) encodes a kinase that may influence components of molecular pathways associated with MeCP2 and regulates axon outgrowth, dendritic morphogenesis, and synapse formation early in life. Here, we report an induced pluripotent stem cell (iPSC) line generated from an epilepsy patient harboring the CDKL5 c.2684C > T (p.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!