Primarily involved in cell proliferation and differentiation processes, the plasma membrane-bound ErbB tyrosine kinase receptor family is formed by four members: erbB1/EGFR, erbB2/HER2/Neu, erbB3/HER3 and erbB4/HER4. Calmodulin (CaM) is a Ca2+-binding protein involved in the regulation of multiple intracellular processes that binds directly to EGFR in the presence of Ca2+, inhibiting its tyrosine kinase activity. Two main regions in the receptor have been implicated in this relationship: the calmodulin-binding domain (CaM-BD) and the calmodulin-like domain (CaM-LD); their sequences are highly conserved in other members of this family of receptors. The presence of mutations, amplification and/or overexpression and genomic rearrangement of these domains was investigated for all four erbB family genes in a series of 89 glial tumors, including 44 WHO grade IV glioblastomas, 21 WHO grade III anaplastic astrocytomas, and 24 WHO grade II astrocytomas. Gene alterations were only found in the regions of interest in EGFR. One glioblastoma showed an in frame tandem duplication of the intracellular region including CaM-LD (exons 18-25). CaM-BD gene overdose was evidenced in 18 tumors that showed EGFR amplification in other domains. Over-expression of CaM-BD and CaM-LD was detected in 6 and 17 cases, respectively, of the 19 tumors in which this study was performed. The other three genes coding for the ErbB receptors did not present point mutations, or rearrangements, and only a very low amplification rate was found for erbB2 (1 case) and erbB3 (4 cases). No overexpression of erbB2, erbB3 or erbB4 was detected. These findings suggest that EGFR is the main erbB gene family member non-randomly involved in malignant glioma development, and that the two domains under study, due to their high conservation and wide separation in the EGFR sequence, are good marker regions for evaluating EGFR/erbB1 gene amplification, as well as for analysing the presence of transcripts corresponding to truncated cytosolic forms of the receptor in these tumors.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!