We have previously shown that abnormal iron metabolism might be one underlying mechanism of the renal damage observed in the angiotensin II-infused rat. Transforming growth factor-beta1 (TGF-beta1) is known to play a crucial role in the development of renal damage induced by activation of the renin-angiotensin-aldosterone system. The purpose of the present study was to examine the effects of an iron chelator and a free radical scavenger on the angiotensin II-induced upregulation of TGF-beta1 in the kidney. Rats were given angiotensin II (0.7 mg/kg/day) via osmotic minipumps for 7 days. The expressions of the mRNAs of TGF-beta1 and collagen types I and IV were significantly increased in response to angiotensin II treatment. Histologic analysis showed that TGF-beta1 expression was upregulated mainly in tubular epithelial cells, and occasionally in glomerular and perivascular cells, some of which were identified as monocytes and/or macrophages. Although tubular cells that overexpressed TGF-beta1 did not contain iron particles, angiotensin II-induced TGF-beta1 upregulation was suppressed by the iron chelator and the free radical scavenger. The free radical scavenger also suppressed angiotensin II-induced upregulation of heme oxygenase-1, an oxidative-stress sensitive gene. By contrast, administration of iron dextran to rats induced upregulation of TGF-beta1 mRNA. Collectively, these data suggest that the renal iron overload and presumed subsequent increase in oxidative stress play a role in angiotensin II-induced upregulation of the mRNAs of TGF-beta1 and collagen types I and IV in the kidney.

Download full-text PDF

Source
http://dx.doi.org/10.1291/hypres.27.599DOI Listing

Publication Analysis

Top Keywords

angiotensin ii-induced
20
free radical
12
radical scavenger
12
ii-induced upregulation
12
transforming growth
8
growth factor-beta1
8
angiotensin
8
renal damage
8
tgf-beta1
8
iron chelator
8

Similar Publications

Background: Several genetic and cardiovascular risk factors increase incidence of Alzheimer's disease and related dementias (ADRD). Hypertension and the ε4 allele of apolipoprotein E (ApoE) are powerful drivers of cognitive impairment in ADRD. These risk factors are also associated with decreased cerebral blood flow (CBF).

View Article and Find Full Text PDF

VSMC-specific TRPC1 deletion attenuates angiotensin II-induced hypertension and cardiovascular remodeling.

J Mol Med (Berl)

January 2025

Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 1800 Lihu Rd, Wuxi, 214122, China.

Transient receptor potential canonical 1 (TRPC1) channel, a Ca-permeable ion channel widely expressed in vasculature, has been reported to be involved in various cardiovascular disorders. However, the pathophysiological function of vascular smooth muscle cell (VSMC)-derived TRPC1 in hypertension and hypertensive cardiovascular remodeling remains to be defined. In this study, we found increased TRPC1 expression in both angiotensin II (AngII)-treated VSMCs and aortas from AngII-infused mice.

View Article and Find Full Text PDF

ClC-5 knockout mitigates angiotensin II-induced hypertension and endothelial dysfunction.

Life Sci

December 2024

Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China. Electronic address:

Aims: Impairment of nitric oxide (NO) production is a major cause of endothelial dysfunction and hypertension. ClC-5 Cl channel is abundantly expressed in the vascular endothelium. However, it remains unclear how it regulates endothelial function.

View Article and Find Full Text PDF

Background: The role of 1,25-dihydroxyvitamin-D3 (VitD) and sirtuin-1 (SIRT1) in mitigating pathological cardiac remodeling is well recognized. However, the potential for SIRT1 to mediate the inhibitory effects of VitD on angiotensin II (Ang II) -induced hypertrophy in H9c2 cardiomyoblasts remains unclear.

Methods: H9c2 cardiomyoblasts were exposed to Ang II or a combination of VitD and Ang II, both in the absence and presence of SIRT1-specific siRNA.

View Article and Find Full Text PDF

Background: Astragalus mongholicus (AM) and Salvia miltiorrhiza (SM) are commonly used in traditional Chinese medicine to treat heart failure (HF). Ferroptosis has been studied as a key factor in the occurrence of HF. It remains unclear whether the combined use of AM and SM can effectively improve HF and the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!