Abnormal activation of the hedgehog-signaling pathway is the pivotal abnormality driving the growth of basal cell carcinomas (BCCs), the most common type of human cancer. Antagonists of this pathway such as cyclopamine may therefore be useful for treatment of basal cell carcinomas and other hedgehog-driven tumors. We report here that chronic oral administration of cyclopamine dramatically reduces ( approximately 66%) UVB induced basal cell carcinoma formation in Ptch1(+/-) mice. Fas expression is low in human and murine basal cell carcinomas but is up-regulated in the presence of the smoothened (SMO) antagonist, cyclopamine, both in vitro in the mouse basal cell carcinoma cell line ASZ001 and in vivo after acute treatment of mice with basal cell carcinomas. This parallels an elevated rate of apoptosis. Conversely, expression of activated SMO in C3H10T1/2 cells inhibits Fas expression. Fas/Fas ligand interactions are necessary for cyclopamine-mediated apoptosis in these cells, a process involving caspase-8 activation. Our data provide strong evidence that cyclopamine and perhaps other SMO antagonists are potent in vivo inhibitors of UVB-induced basal cell carcinomas in Ptch1(+/-) mice and likely in humans because the majority of human basal cell carcinomas manifest mutations in PTCH1 and that a major mechanism of their inhibitory effect is through up-regulation of Fas, which augments apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-04-1393DOI Listing

Publication Analysis

Top Keywords

basal cell
36
cell carcinomas
28
fas expression
12
cell
10
basal
9
cell carcinoma
8
ptch1+/- mice
8
carcinomas
7
inhibition smoothened
4
smoothened signaling
4

Similar Publications

The impact of phenotypic heterogeneity on fungal pathogenicity and drug resistance.

FEMS Microbiol Rev

January 2025

Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.

Phenotypic heterogeneity in genetically clonal populations facilitates cellular adaptation to adverse environmental conditions while enabling a return to the basal physiological state. It also plays a crucial role in pathogenicity and the acquisition of drug resistance in unicellular organisms and cancer cells, yet the exact contributing factors remain elusive. In this review, we outline the current state of understanding concerning the contribution of phenotypic heterogeneity to fungal pathogenesis and antifungal drug resistance.

View Article and Find Full Text PDF

Human amylin, called also islet amyloid polypeptide (hIAPP), is the principal constituent of amyloid deposits in the pancreatic islets. Together with hyperglycemia, hIAPP-derived oligomers and aggregates are important culprits in type 2 diabetes mellitus (T2DM). Preventing aggregation, and in particular inhibiting the formation and/or stimulating degradation of toxic amylin oligomers formed early in the process, may reduce the negative effects of T2DM.

View Article and Find Full Text PDF

Bladder cancer (BLCA) genomic profiling has identified molecular subtypes with distinct clinical characteristics and variable sensitivities to frontline therapy. BLCAs can be categorized into luminal or basal subtypes based on their gene expression. We comprehensively characterized nine human BLCA cell lines (UC3, UC6, UC9, UC13, UC14, T24, SCaBER, RT4V6 and RT112) into molecular subtypes using orthotopic xenograft models.

View Article and Find Full Text PDF

A sustained blood-stage infection of the human malaria parasite P. falciparum relies on the active exit of merozoites from their host erythrocytes. During this process, named egress, the infected red blood cell undergoes sequential morphological events: the rounding-up of the surrounding parasitophorous vacuole, the disruption of the vacuole membrane and finally the rupture of the red blood cell membrane.

View Article and Find Full Text PDF

[Ophthalmic oncology in a warmer world: climate-related increase in the prevalence of eyelid cancer].

Ophthalmologie

January 2025

Klinik für Augenheilkunde, Klinikum Chemnitz, Flemmingstr. 2, 09116, Chemnitz, Deutschland.

Background: Damage induced by ultraviolet (UV) radiation plays a decisive role in the carcinogenesis of malignant tumors of the eyelids.

Methods: A selective literature search was performed in PubMed and Google Scholar.

Results: Large epidemiological studies show an increase in the prevalence of eyelid tumors in recent decades.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!