Aneuploidy and chromosome instability are common abnormalities in human cancer. Loss of control over mitotic progression, multipolar spindle formation, and cytokinesis defects are all likely to contribute to these phenotypes. Nek2 is a cell cycle-regulated protein kinase with maximal activity at the onset of mitosis that localizes to the centrosome. Functional studies have implicated Nek2 in regulation of centrosome separation and spindle formation. Here, we present the first study of the protein expression levels of the Nek2 kinase in human cancer cell lines and primary tumors. Nek2 protein is elevated 2- to 5-fold in cell lines derived from a range of human tumors including those of cervical, ovarian, breast, prostate, and leukemic origin. Most importantly, by immunohistochemistry, we find that Nek2 protein is significantly up-regulated in preinvasive in situ ductal carcinomas of the breast as well as in invasive breast carcinomas. Finally, by ectopic expression of Nek2A in immortalized HBL100 breast epithelial cells, we show that increased Nek2 protein leads to accumulation of multinucleated cells with supernumerary centrosomes. These data highlight the Nek2 kinase as novel potential target for chemotherapeutic intervention in breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-04-0960DOI Listing

Publication Analysis

Top Keywords

nek2 protein
12
nek2
8
protein expression
8
breast cancer
8
human cancer
8
spindle formation
8
nek2 kinase
8
cell lines
8
protein
6
breast
6

Similar Publications

Identification of Immune Infiltration-Associated CC Motif Chemokine Ligands as Biomarkers and Targets for Colorectal Cancer Prevention and Immunotherapy.

Int J Mol Sci

January 2025

Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, School of Medicine, International Campus, Zhejiang University, Haining 314400, China.

Colorectal cancer (CRC) is the third most common cancer globally, with limited effective biomarkers and sensitive therapeutic targets. An increasing number of studies have highlighted the critical role of tumor microenvironment (TME) imbalances, particularly immune escape due to impaired chemokine-mediated trafficking, in tumorigenesis and progression. Notably, CC chemokines (CCLs) have been shown to either promote or inhibit angiogenesis, metastasis, and immune responses in tumors, thereby influencing cancer development and patient outcomes.

View Article and Find Full Text PDF

Insights into NEK2 inhibitors as antitumor agents: From mechanisms to potential therapeutics.

Eur J Med Chem

January 2025

Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Healthand, Department of Frontiers Science Center for Disease-related Molecular Network, Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

NEK2, a serine/threonine protein kinase, is integral to mitotic events such as centrosome duplication and separation, microtubule stabilization, spindle assembly checkpoint, and kinetochore attachment. However, NEK2 overexpression leads to centrosome amplification and chromosomal instability, which are significantly associated with various malignancies, including liver, breast, and non-small cell lung cancer. This overexpression could facilitate tumor development and confer resistance to therapy by promoting aberrant cell division and centrosome amplification.

View Article and Find Full Text PDF

Rho guanine nucleotide dissociation inhibitor 1 (RhoGDI1) plays a critical role in regulating the activity of Rho guanosine triphosphatases (GTPases). Phosphorylation of RhoGDI1 dynamically modulates the activation of Rho GTPases, influencing cell proliferation and migration. This study explored the involvement of Never In Mitosis A (NIMA)-related serine/threonine protein kinase 2 (NEK2) in phosphorylating RhoGDI1 and its implications in cancer cell behavior associated with tumor progression.

View Article and Find Full Text PDF

NEK2 (NIMA-related kinase 2) has recently gained attention for its potential role in osteoarthritis (OA) chondrocytes, however, its specific involvement remains unclear. This study aimed to investigate the role of NEK2 in OA progression and the underlying molecular mechanisms. Primary mouse knee chondrocytes were stimulated with IL-1β to establish an in vitro OA model, followed by the knockdown of NEK2 or ATF2.

View Article and Find Full Text PDF

Cisplatin-based concurrent chemoradiotherapy (CCRT) is the standard treatment for cervical patients with locally advanced disease. Despite the improved survival rates and prognosis observed in patients undergoing CCRT, over 30-40% do not achieve complete response and are at risk of locoregional recurrence. Targeting crucial molecules that confer resistance may improve the clinical outcomes of the treatment resistant patient cohort.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!