MAIL (molecule-possessing ankyrin repeats induced by lipopolysaccharide) is a nuclear IkappaB protein that is also termed interleukin-1-inducible nuclear ankyrin repeat protein or inhibitor of nuclear factor kappaB (IkappaB) zeta. In this study, we generated Mail-/- mice to investigate the roles of MAIL in whole organisms. Mail-/- mice grew normally until 4-8 weeks after birth, when they began to develop lesions in the skin of the periocular region, face, and neck. MAIL mRNA and protein were constitutively expressed in the skin of wild type controls, especially in the keratinocytes. Serum IgE was higher in Mail-/- mice than in normal. Histopathological analysis indicated that the Mail-/- skin lesions appeared to be atopic dermatitis (AD) eczema with inflammatory cell infiltration. In addition, markedly elevated expression of some chemokines such as thymus and activation-regulated chemokine was detected in the Mail-/- skin lesions, similar to that observed in the skin of patients with AD. In Mail-/- mice, MAIL-deficient keratinocytes might be activated to produce chemokines and induce intraepidermal filtration of inflammatory cells, resulting in the onset of the AD-like disease. These findings suggest that MAIL is an essential molecule for homeostatic regulation of skin immunity. The Mail-/- mouse is a valuable new animal model for research on AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M409770200 | DOI Listing |
Lipids Health Dis
December 2024
Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China.
Background: There is still no reliable therapeutic targets and effective pharmacotherapy for metabolic dysfunction-associated steatotic liver disease (MASLD). RASD1 is short for Ras-related dexamethasone-induced 1, a pivotal factor in various metabolism processes of Human. However, the role of RASD1 remains poorly illustrated in MASLD.
View Article and Find Full Text PDFProg Neurobiol
December 2024
Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, PR China. Electronic address:
In response to stressors, individuals manifest varied behavioral responses directed toward satisfying physiological survival needs. Although the enduring effects of adolescent stress on both humans and animals are well-documented, the underlying mechanisms remain insufficiently elucidated. Utilizing immunofluorescence, viral injections, and brain slice electrophysiological recordings, we have delineated that heightened excitability among glutamatergic neurons in the basolateral amygdala (BLA) is responsible for inducing heightened exploratory behaviors in adolescent mice subjected to mild, chronic restraint stress.
View Article and Find Full Text PDFStem Cell Reports
December 2024
Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China. Electronic address:
Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease that results in motor, sensory, cognitive, and affective deficits. Hippocampal demyelination, a common occurrence in MS, is linked to impaired cognitive function and mood. Despite this, the precise mechanisms underlying cognitive impairments in MS remain elusive.
View Article and Find Full Text PDFNeoplasia
December 2024
Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, Israel; Tel Aviv University, Faculty of Medicine and Health Sciences, Tel Aviv, Israel; Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel; Davidoff Cancer Center, Beilinson Campus, Petah Tikva, Israel. Electronic address:
Triple-negative breast cancer (TNBC) is an aggressive subtype that accounts for 10-15 % of breast cancer. Current treatment of high-risk early-stage TNBC includes neoadjuvant chemo-immune therapy. However, the substantial variation in immune response prompts an urgent need for new immune-targeting agents.
View Article and Find Full Text PDFCell Mol Biol Lett
December 2024
Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
Background: Radiotherapy for pelvic malignant tumors inevitably causes intestinal tissue damage. The regeneration of intestinal epithelium after radiation injury relies mainly on crypt fission. However, little is known about the regulatory mechanisms of crypt fission events.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!