An alternative to land spreading of manure is to grow crops of algae on the N and P present in the manure and convert manure N and P into algal biomass. The objective of this study was to evaluate the fertilizer value of dried algal biomass that had been grown using anaerobically digested dairy manure. Results from a flask study using two soils amended with algal biomass showed that 3% of total algal nitrogen (N) was present as plant available N at day 0. Approximately 33% of algal N was converted to plant available N within 21 days at 25 degrees C in both soils. Levels of Mehlich-3 extractable phosphorus (P) in the two soils rose with increasing levels of algal amendment but were also influenced by existing soil P levels. Results from plant growth experiments showed that 20-day old cucumber and corn seedlings grown in algae-amended potting mix contained 15-20% of applied N, 46-60% of available N, and 38-60% of the applied P. Seedlings grown in algae-amended potting mixes were equivalent to those grown with comparable levels of fertilizer amended potting mixes with respect to seedling dry weight and nutrient content. These results suggest that dried algal biomass produced from treatment of anaerobically digested dairy manure can substitute for commercial fertilizers used for potting systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2004.05.026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!