Structure and assembly of the pseudopilin PulG.

Mol Microbiol

Molecular Genetics Unit, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris Cedex 15, France.

Published: November 2004

The pseudopilin PulG is one of several essential components of the type II pullulanase secretion machinery (the Pul secreton) of the Gram-negative bacterium Klebsiella oxytoca. The sequence of the N-terminal 25 amino acids of the PulG precursor is hydrophobic and very similar to the corresponding region of type IV pilins. The structure of a truncated PulG (lacking the homologous region), as determined by X-ray crystallography, was found to include part of the long N-terminal alpha-helix and the four internal anti-parallel beta-strands that characterize type IV pilins, but PulG lacks the highly variable loop region with a disulphide bond that is found in the latter. When overproduced, PulG forms flexible pili whose structural features, as visualized by electron microscopy, are similar to those of bacterial type IV pili. The average helical repeat comprises 17 PulG subunits and four helical turns. Electron microscopy and molecular modelling show that PulG probably assembles into left-handed helical pili with the long N-terminal alpha-helix tightly packed in the centre of the pilus. As in the type IV pilins, the hydrophobic N-terminal part of the PulG alpha-helix is necessary for its assembly. Subtle sequence variations within this highly conserved segment seem to determine whether or not a type IV pilin can be assembled into pili by the Pul secreton.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2958.2004.04307.xDOI Listing

Publication Analysis

Top Keywords

type pilins
12
pulg
9
pseudopilin pulg
8
pul secreton
8
long n-terminal
8
n-terminal alpha-helix
8
electron microscopy
8
type
6
structure assembly
4
assembly pseudopilin
4

Similar Publications

Two-component system GrpP/GrpQ promotes pathogenicity of uropathogenic Escherichia coli CFT073 by upregulating type 1 fimbria.

Nat Commun

January 2025

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.

Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infections (UTIs). Invasion into bladder epithelial cells (BECs) on the bladder luminal surface via type 1 fimbria is the first critical step in UPEC infection. Although type 1 fimbria expression increases during UPEC invasion of BECs, the underlying regulatory mechanisms remain poorly understood.

View Article and Find Full Text PDF

Structure of the Pseudomonas aeruginosa PAO1 Type IV pilus.

PLoS Pathog

December 2024

Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom.

Type IV pili (T4Ps) are abundant in many bacterial and archaeal species, where they play important roles in both surface sensing and twitching motility, with implications for adhesion, biofilm formation and pathogenicity. While Type IV pilus (T4P) structures from other organisms have been previously solved, a high-resolution structure of the native, fully assembled T4P of Pseudomonas aeruginosa, a major human pathogen, would be valuable in a drug discovery context. Here, we report a 3.

View Article and Find Full Text PDF
Article Synopsis
  • The human oral and nasal microbiota consists of around 770 cultivable bacterial species, with over 2,000 genome sequences available in the expanded Human Oral Microbiome Database (eHOMD).
  • Researchers created a Python tool called HOMDscrape to help retrieve and analyze data regarding bacterial motility from eHOMD.
  • The study focused on the evolutionary relationships of motile bacteria, specifically examining the type 9 secretion system (T9SS) and its role in bacterial motility, which may influence how these bacteria coexist in the human oral microbiota.
View Article and Find Full Text PDF

All cultivated Patescibacteria, or CPR, exist as obligate episymbionts on other microbes. Despite being ubiquitous in mammals and environmentally, molecular mechanisms of host identification and binding amongst ultrasmall bacterial episymbionts are largely unknown. Type 4 pili (T4P) are well conserved in this group and predicted to facilitate symbiotic interactions.

View Article and Find Full Text PDF

The 1.3 Å resolution structure of the truncated group Ia type IV pilin from Pseudomonas aeruginosa strain P1.

Acta Crystallogr D Struct Biol

December 2024

Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.

The type IV pilus is a diverse molecular machine capable of conferring a variety of functions and is produced by a wide range of bacterial species. The ability of the pilus to perform host-cell adherence makes it a viable target for the development of vaccines against infection by human pathogens such as Pseudomonas aeruginosa. Here, the 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!